Skip to main content
Log in

Complexes of nitric oxide with water and imidazole

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

NO–Imi–H2O complexes can be used as models to investigate the interactions of histidine with nitric oxide and water in biological systems like myoglobin. We discuss here the water–imidazole, water–nitric oxide dimers and the trimolecular complexes of nitric oxide with water and imidazole from the donor–acceptor point of view using the natural bond orbitals and localized molecular orbital energy decomposition analysis schemes. The comparison between trimolecular and bimolecular complexes shows that in general, the stabilization energies are more sensitive to changes in the interactions of imidazole with water than to changes in the interactions with nitric oxide. The effect of imidazole ring protonation on the geometry and stabilization of the complexes is also investigated. We found that cooperative effects are more relevant in charged complexes and planar structures than in neutral species and nonplanar complexes. The driving forces governing the interactions between open and closed shell systems are also discussed with special emphasis on the role of lone pairs and unpaired electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Muller-Dethlefs K, Hobza P (2000) Chem Rev 100(1):143–167

    Article  Google Scholar 

  2. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88(6):899–926

    Article  CAS  Google Scholar 

  3. Hernández-Soto H, Weinhold F, Francisco JS (2007) J Chem Phys 127:164102

    Article  Google Scholar 

  4. Crespo-Otero R, Sanchez-Garcia E, Suardiaz R, Montero LA, Sander W (2008) Chem Phys 353:193

    Article  CAS  Google Scholar 

  5. Crespo-Otero R, Bravo-Rodriguez K, Roy S, Benighaus T, Thiel W, Sander W, Sanchez-Garcia E (2013) ChemPhysChem 14(4):805–811

    Article  CAS  Google Scholar 

  6. Mardyukov A, Crespo-Otero R, Sanchez-Garcia E, Sander W (2010) Chem-Eur J 16(29):8679–8689

    Article  CAS  Google Scholar 

  7. Mardyukov A, Sanchez-Garcia E, Crespo-Otero R, Sander W (2009) Angew Chem-Int Edit 48(26):4804–4807

    Article  CAS  Google Scholar 

  8. Ziolo MT (2008) Nitric Oxide 18:153–156

    Article  CAS  Google Scholar 

  9. Bian K, Doursout M, Murad F (2008) J Clin Hypertens (Greenwich) 10:304–310

    Article  CAS  Google Scholar 

  10. McCleverty JA (2004) Chem Rev 104(2):403–418

    Article  CAS  Google Scholar 

  11. Richter-Addo GB, Legzdins P, Burstyn J (2002) Chem Rev 102(4):857–859

    Article  CAS  Google Scholar 

  12. Cybulski H, Fernández B (2012) J Phys Chem A 116:7319–7328

    Article  CAS  Google Scholar 

  13. Sumiyoshi Y, Endo Y (2007) J Chem Phys 127:184309

    Article  Google Scholar 

  14. Ershova OV, Besley NA (2012) J Chem Phys 136:244313

    Article  Google Scholar 

  15. Bergeron DE, Musgrave A, Ayles VL, Gammon RT, Silber JAE, Wright TG (2006) J Chem Phys 125(14):144319

    Article  Google Scholar 

  16. Bergeron DE, Musgrave A, Gammon RT, Ayles VL, Silber JAE, Wright TG, Wen B, Meyer H (2006) J Chem Phys 124(21):214302

    Article  Google Scholar 

  17. Ivanic J, Schmidt MW, Luke B (2012) J Chem Phys 137:214316

    Article  Google Scholar 

  18. Wen B, Meyer H (2009) J Chem Phys 131:034304

    Article  CAS  Google Scholar 

  19. Akiike M, Tsuji K, Shibuya K, Obi K (1995) Chem Phys Lett 243(1–2):89–93

    Article  CAS  Google Scholar 

  20. Crespo-Otero R, Montero LA, Stohrer W-D, Vega JMGDL (2005) J Chem Phys 123:134107

    Article  Google Scholar 

  21. Daire SE, Lozeille J, Gamblin SD, Lee EPF, Wright TG (2001) Chem Phys Lett 346(3–4):305–312

    Article  CAS  Google Scholar 

  22. Daire SE, Lozeille J, Gamblin SD, Wright TG (2000) J Phys Chem A 104(40):9180–9183

    Article  CAS  Google Scholar 

  23. Daire SE, Lozeille J, Gamblin SD, Wright TG, Lee EPF (2001) Phys Chem Chem Phys 3(6):917–924

    Article  CAS  Google Scholar 

  24. Lee EPF, Mack P, Wright TG (1997) Chem Phys 224(2–3):191–199

    Article  CAS  Google Scholar 

  25. Lozeille J, Daire SE, Gamblin SD, Wright TG, Lee EPF (2000) J Chem Phys 113(24):10952–10961

    Article  CAS  Google Scholar 

  26. Miller JC (1987) J Chem Phys 86(6):3166–3171

    Article  CAS  Google Scholar 

  27. Myszkiewicz G, Sadlej J (2000) Chem Phys Lett 318(1–3):232–239

    Article  CAS  Google Scholar 

  28. Møller JKS, Skibsted LH (2002) Chem Rev 102:1167

    Article  Google Scholar 

  29. Li A, Cao Z, Li Y, Yan T, Shen P (2012) J Phys Chem B 116:12793–12800

    Article  CAS  Google Scholar 

  30. Mangiatordi GF, Hermet J, Adamo C (2011) J Phys Chem A 115:2627–2634

    Article  CAS  Google Scholar 

  31. Choi MY, Miller RE (2006) J Phys Chem A 110:9344–9351

    Article  CAS  Google Scholar 

  32. Carles FL, Schermann JP, Desfrançois c (2000) J Phys Chem A 104:10662–10668

    Article  CAS  Google Scholar 

  33. Adesokan AA, Chaban GM, Dopfer O, Gerber RB (2007) J Phys Chem A 111:7374–7381

    Article  CAS  Google Scholar 

  34. Yan S, Bu AY (2004) J Phys Chem B 108:13874–13881

    Article  CAS  Google Scholar 

  35. Cybulski H, Żuchowski PS, Fernández B, Sadlej J (2009) J Chem Phys 130:104303

    Article  Google Scholar 

  36. Dozova N, Krim L, Alikhani ME, Lacome N (2006) J Phys Chem A 110:11617–11626

    Article  CAS  Google Scholar 

  37. Crespo-Otero R, Bravo-Rodríguez K, Suardíaz R, Montero LA, Vega JMGDL (2009) J Phys Chem A 113(52):14595–14605

    Article  CAS  Google Scholar 

  38. Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123:161103

    Article  Google Scholar 

  39. Frisch MJ, T GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, PopleJA (2004) Gaussian 03, Revision E01, Gaussian, Inc, Wallingford CT

  40. Folmer DE, Poth L, Wisniewski ES, Castleman AW Jr (1998) Chem Phys Lett 287(1–2):1–7

    Article  CAS  Google Scholar 

  41. Su P, Li H (2009) J Chem Phys 131(1):014102

    Article  Google Scholar 

  42. Boys SF, Bernardi F (1970) Mol Phys 19: 553–566

  43. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comp Chem 14(11):1347–1363

    Article  CAS  Google Scholar 

  44. Crespo-Otero R, Perez-Badell Y, Padron-Garcia A, Montero AL (2007) Theor Chem Acc 118(3):649

    Article  CAS  Google Scholar 

  45. Bael MKVASJ, Schoone K, Houben L, McCarthy W, Adamowicz L, Nowak MJ, Maes G (1997) J Phys Chem A 101:2397–2413

    Article  Google Scholar 

Download references

Acknowledgments

R.C-O and R.S acknowledge a research fellowship from Universidad Autónoma de Madrid. E.S-G and K.B-R acknowledge Liebig and doctoral stipends, respectively, from the Fonds der Chemischen Industrie, Germany. E.S-G acknowledges the support of the Cluster of Excellence RESOLV (EXC 1069) and the Collaborative Research Center SFB 1093, both funded by the Deutsche Forschungsgemeinschaft. J.M.GV thanks MICINN (Project No. CTQ2010-12932) and AECID (Project No. A1/035856/11). Computer time provided by the Centro de Computación Científica of Universidad Autónoma de Madrid is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Crespo-Otero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2015_1691_MOESM1_ESM.docx

Supplementary Information Available: Tables of interaction energies, NBO donor–acceptor interactions, LMOEDA analyses (DOCX 859 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez Gonzalez, M., Bravo-Rodriguez, K., Suardiaz, R. et al. Complexes of nitric oxide with water and imidazole. Theor Chem Acc 134, 88 (2015). https://doi.org/10.1007/s00214-015-1691-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1691-x

Keywords

Navigation