Skip to main content
Log in

Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The interaction affinity between human IgG and a short peptide ligand (hexameric HWRGWV) was investigated by following the shifts in frequency and energy dissipation in a quartz crystal microbalance (QCM). HWRGWV was immobilized by means of poly(ethylene glycol) tethered on QCM sensors coated with silicon oxide, which enhanced the accessibility of the peptide to hIgG and also passivated the surface. Ellipsometry and ToF-SIMS were employed for surface characterization. The peptide ligand density was optimized to 0.88 chains nm−2, which enabled the interaction of each hIgG molecule with at least one ligand. The maximum binding capacity was found to be 4.6 mg m−2, corresponding to a monolayer of hIgG, similar to the values for chromatographic resins. Dissociation constants were lower than those obtained from resins, possibly due to overestimation of bound mass by QCM. Equilibrium thermodynamic and kinetic parameters were determined, shedding light on interfacial effects important for detection and bioseparation.

The interaction affinity between human IgG and a short peptide ligand was investigated by using quartz crystal microgravimetry, ellipsometry and ToF-SIMS. Equilibrium thermodynamic and kinetics parameters were determined, shedding light on interfacial effects important for detection and bioseparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Leffell MS, Donnenberg AD, Rose NR (1997) Handbook of human immunology. CRC, New York, p 73

    Google Scholar 

  2. Hage DS (2006) Handbook of affinity chromatography, chromatographic science series, vol 92. CRC, Boca Raton, pp 539–557

    Google Scholar 

  3. Yang H, Gurgel PV, Carbonell RGJ (2005) Pept Res 66:120–137

    Article  Google Scholar 

  4. Yang H, Gurgel PV, Carbonell RGJ (2009) Chromatogr A 1216:910–918

    Article  CAS  Google Scholar 

  5. Naik AD, Menegatti S, Gurgel PV, Carbonell RGJ (2011) Chromatogr A 1218:1691–1700

    Article  CAS  Google Scholar 

  6. Kauffman DB, Hentsch ME, Baumbach GA, Buettner JA, Dadd CA, Huang PY, Hammond DJ, Carbonell RG (2002) Biotechnol Bioeng 77:278–289

    Article  Google Scholar 

  7. Wang GQ, Carbonell RGJ (2005) Chromatogr A 1078:98–112

    Article  CAS  Google Scholar 

  8. Heldt CL, Gurgel PV, Jaykus L-A, Carbonell RG (2012) Biotechnol J 7:558–565

    Article  CAS  Google Scholar 

  9. Islam N, Gurgel PV, Rojas OJ, Carbonell RG (2014) Biosens Bioelectron 58:380–387

    Article  CAS  Google Scholar 

  10. Islam N, Gurgel PV, Rojas OJ, Carbonell RJ (2014) Phys Chem 118:5361–5373

    CAS  Google Scholar 

  11. Zhang Y, Islam N, Carbonell RG, Rojas OJ (2013) Anal Chem 85:1106–1113

    Article  CAS  Google Scholar 

  12. Zhang Y, Islam N, Carbonell RG, Rojas OJ (2013) Biomacromolecules 5:8030–8037

    CAS  Google Scholar 

  13. Zhang Y, Carbonell RG, Rojas OJ (2013) Biomacromolecules 14:4161–4168

    Article  CAS  Google Scholar 

  14. Orelma O, Filpponen I, Johansson L-S, Laine J, Rojas OJ (2011) Biomacromolecules 12:4311–4318

    Article  CAS  Google Scholar 

  15. Orelma H, Filpponen I, Johansson L-S, Österberg M, Rojas OJ, Laine J (2012) Biointerphases 7:61

    Article  CAS  Google Scholar 

  16. Orelma H, Johansson L-S, Filpponen I, Rojas OJ, Laine J (2012) Biomacromolecules 13:2802–2810

    Article  CAS  Google Scholar 

  17. Orelma H, Morales OL, Johansson L-S, Hoeger IC, Filpponen I, Castro C, Rojas OJ, Laine J (2014) RSC Adv 4:51440–51450

    Article  CAS  Google Scholar 

  18. Kaufmann DB, Hayes T, Buettner J, Hammond DJ, Carbonell RGJ (2000) Chromatogr A 874:21–26

    Article  Google Scholar 

  19. Wang G, Carbonell RG (2006) Biotechnol Prog 22:1358–1367

    Article  CAS  Google Scholar 

  20. O’Sullivan CK, Guilbault GG (1999) Biosens Bioelectron 14:663–670

    Article  Google Scholar 

  21. Rodahl M, Hook F, Krozer A, Brzezinski P, Kasemo B (1995) Rev Sci Inst 66:3924–3930

    Article  CAS  Google Scholar 

  22. Lu B (1995) Anal Chem 67:83–97

    Article  CAS  Google Scholar 

  23. Kwon Y, Han ZZ, Karatan E, Mrksich M, Kay BK (2004) Anal Chem 76:5713–5720

    Article  CAS  Google Scholar 

  24. Bae YM, Oh BK, Lee W, Lee WH, Choi JW (2005) Biosens Bioelectron 21:103–110

    Article  CAS  Google Scholar 

  25. Starodub NF, Pigarova LV, Demchenko A, Nabok AV (2005) Bioelectrochemistry 66:111–115

    Article  CAS  Google Scholar 

  26. Buijs J, Lichtenbelt JWT, Norde W, Lyklema J (1995) Colloid Surf B 5:11–23

    Article  CAS  Google Scholar 

  27. Caruso F, Rodda E, Furlong DN (1996) J Colloid Interface Sci 178:104–115

    Article  CAS  Google Scholar 

  28. Huang PY, Carbonell RG (1995) Biotechnol Bioeng 47:288–297

    Article  CAS  Google Scholar 

  29. Huang PY, Baumbach GA, Dadd CA, Buettner JA, Masecar BL, Hentsch M, Hammond DJ, Carbonell RG (1996) Bioorg Med Chem 4:699–708

    Article  CAS  Google Scholar 

  30. Heldt CL, Gurgel PV, Jaykus L-A, Carbonell RG (2008) Biotechnol Prog 24:554–560

    Article  CAS  Google Scholar 

  31. Shen F (2010) Affinity interaction between hexamer peptide ligand HWRGWV and immunoglobulin G studied by quartz crystal microbalance and surface plasmon resonance. www.lib.ncsu.edu/resolver/1840.16/6116

  32. Sauerbrey G (1959) Zeitschrift für Phys 155:206–222

    Article  CAS  Google Scholar 

  33. Hook F, Kasemo B (2001) Anal Chem 73:5796–5804

    Article  CAS  Google Scholar 

  34. Su XD, Zhang H (2004) Sens Actuators B 100:309–314

    Article  CAS  Google Scholar 

  35. Voros J (2004) Biophys J 87:553–561

    Article  Google Scholar 

  36. Zhou C, Friedt J-M, Angelova A, Choi K-H, Laureyn W, Frederix F, Francis LA, Campitelli A, Engelborghs Y, Borghs G (2004) Langmuir 20:5870–5878

    Article  CAS  Google Scholar 

  37. Rodahl M, Hook F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, Voinova M, Kasemo B (1997) Faraday Discuss 107:229–246

    Article  CAS  Google Scholar 

  38. Wilk J (2009) Exp Therm Fluid Sci 33:267–272

    Article  CAS  Google Scholar 

  39. Torstein J, Jens F, Einar R (1998) J Prot Chem 7:165–171

    Google Scholar 

  40. Giles S, Czuprynski C (2003) Infect Immun 71:6648–6652

    Article  CAS  Google Scholar 

  41. Kanazawa KK, Gordon JG (1985) Anal Chim Acta 175:99–105

    Article  CAS  Google Scholar 

  42. Johannsmann D, Mathauer K, Wegner G, Knoll W (1992) Phys Rev B 46:7808–7815

    Article  Google Scholar 

  43. Kosslinger C, Drost S, Aberl F, Wolf H, Koch S, Woias P (1992) Biosens Bioelectron 7:397–404

    Article  CAS  Google Scholar 

  44. Reimhult E, Larsson C, Kasemo B, Hook F (2004) Anal Chem 76:7211–7220

    Article  CAS  Google Scholar 

  45. Marx KA (2003) Biomacromolecules 4:1099–1120

    Article  CAS  Google Scholar 

  46. Patel AR, Frank CW (2006) Langmuir 22:7587–7599

    Article  CAS  Google Scholar 

  47. Limson J, Odunuga OO, Green H, Hook F, Blatch GL (2004) S Afr J Sci 100:678–682

    CAS  Google Scholar 

  48. Niikura K, Nagata K, Okahata Y (1996) Chem Lett 10:863–864

    Article  Google Scholar 

  49. Vikinge TP, Hansson KM, Sandstrom P, Liedberg B, Lindhal TL, Lundstrom I, Tengvall P, Hook F (2000) Biosens Bioelectron 15:605–613

    Article  CAS  Google Scholar 

  50. Hook F, Rodahl M, Brzezinski P, Kasemo BJ (1998) J Colloid Interface Sci 208(1):63–67

    Article  CAS  Google Scholar 

  51. Stadler H, Mondon M, Ziegler C (2003) Anal Bioanal Chem 375:53–61

    CAS  Google Scholar 

  52. Friedt JM, Francis L, Choi KH, Frederix F, Campitelli A (2003) J Vac Sci Technol A 21:1500–1505

    Article  CAS  Google Scholar 

  53. Hook F, Voros J, Rodahl M, Kurrat R, Boni P, Ramsden JJ, Textor M, Spencer ND, Tengvall P, Gold J, Kasemo B (2002) Colloid Surf B 24:155–170

    Article  CAS  Google Scholar 

  54. Spangler BD, Wilkinson EA, Murphy JT, Tyler BJ (2001) Anal Chim Acta 444:149–161

    Article  CAS  Google Scholar 

  55. Bailey LE, Kambhampati D, Kanazawa KK, Knoll W, Frank CW (2002) Langmuir 18:479–489

    Article  CAS  Google Scholar 

  56. Su XD, Wu YJ, Knoll W (2005) Biosens Bioelectron 21:719–726

    Article  CAS  Google Scholar 

  57. Tamerler C, Ore EE, Duman M, Venkatasubramanian E, Sarikaya M (2006) Langmuir 22:7712–7718

    Article  CAS  Google Scholar 

  58. Teichroeb JH, Forrest JA, Jones LW, Chan J, Dalton KJ (2008) J Colloid Interface Sci 325:157–164

    Article  CAS  Google Scholar 

  59. Fang JJ, Wang P, Du XB, Zhu DM (2009) J Phys Chem C 113:16121–16127

    Article  CAS  Google Scholar 

  60. Messina GML, Satriano C, Marletta G (2009) Colloid Surf B 70:76–83

    Article  CAS  Google Scholar 

  61. Acosta RE, Muller RH, Tobias CW (1985) AIChE J 31:473–482

    Article  CAS  Google Scholar 

  62. Gunther Z, Sherma J (1973) CRC handbook of chromatography: general data and principles. CRC, Boca Raton, p 89

    Google Scholar 

  63. Yang H, Gurgel PV, Williams DK Jr, Bobay BG, Cavanagh J, Muddiman DC, Carbonell RG (2010) J Mol Recognit 23:271–282

    CAS  Google Scholar 

  64. Hong SR, Choi SJ, Jeong HD, Hong S (2009) Biosens Bioelectron 24:1635–1640

    Article  CAS  Google Scholar 

  65. Carrigan SD, Scott G, Tabrizian M (2005) Langmuir 21:5966–5973

    Article  CAS  Google Scholar 

  66. Gerdon AE, Wright DW, Cliffel DE (2005) Anal Chem 77:304–310

    Article  CAS  Google Scholar 

  67. Medina MB (2005) J Rapid Method Autom Microbiol 13:37–55

    Article  CAS  Google Scholar 

  68. Damos FS, Mendes RK, Kubota LT (2004) Química Nov. 27:970–979

    Article  CAS  Google Scholar 

  69. Patel PD (2002) TrAC Trends Anal Chem 21:96–115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from Pathogen Removal and Diagnostic Technologies (PRDT), a subsidiary of ProMetic BioSciences Inc. O.J.R. is grateful for funding support by the Academy of Finland through its Center of Excellence Program (2014–2019) “Molecular Engineering of Biosynthetic Hybrid Materials Research” (HYBER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando J. Rojas.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Published in the topical collection Analytical Applications of Biomimetic Recognition Elements with guest editors Maria C. Moreno-Bondi and Elena Benito-Peña.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 734 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Rojas, O.J., Genzer, J. et al. Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer. Anal Bioanal Chem 408, 1829–1841 (2016). https://doi.org/10.1007/s00216-015-9135-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9135-y

Keywords

Navigation