Skip to main content
Log in

Identification of the oleic acid ethanolamide (OEA) isomer cis-vaccenic acid ethanolamide (VEA) as a highly abundant 18:1 fatty acid ethanolamide in blood plasma from rats and humans

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The endocannabinoid system is important in various physiological pathways, especially the regulation of food intake. It consists of endocannabinoids like 2-arachidonoyl-glycerol (2-AG) or the fatty acid ethanolamide archachidonoyl-ethanolamide (AEA) with binding affinity to cannabinoid receptors. Further, fatty acid ethanolamides (FAEAs) influence the endocannabinoid system without affecting cannabinoid receptors by using independent physiological pathways. Among FAEAs, oleic acid ethanolamide (OEA) gained importance because of its promising ability to reduce food intake. By ultrahigh-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UHPLC–ESI–MS/MS), we detected a chromatographically separated molecule in plasma samples from rats and humans with identical mass and fragmentation patterns as those of OEA. Via synthesis and extensive analysis of ethanolamides of different cis/trans- and position isomers of oleic acid (cis9-18:1), we could identify the unknown molecule as vaccenic acid (cis11-18:1) ethanolamide (VEA). In this study we identified VEA as the most abundant 18:1 FAEA in rat plasma and the second most abundant 18:1 FAEA in human plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol. 1988;34(5):605–13.

    CAS  Google Scholar 

  2. Munro S, Thomas KL, Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365(6441):61–5.

    Article  CAS  Google Scholar 

  3. Piomelli D. The molecular logic of endocannabinoid signalling. Nat Rev Neurosci. 2003;4(11):873–84.

    Article  CAS  Google Scholar 

  4. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol. 1995;50(1):83–90.

    Article  CAS  Google Scholar 

  5. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258(5090):1946–9.

    Article  CAS  Google Scholar 

  6. Hanus L, Abu-Lafi S, Fride E, Breuer A, Vogel Z, Shalev DE, et al. 2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor. Proc Natl Acad Sci U S A. 2001;98(7):3662–5.

    Article  CAS  Google Scholar 

  7. Bisogno T, Melck D, Bobrov M, Gretskaya NM, Bezuglov VV, Petrocellis L, et al. N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem J. 2000;351(Pt 3):817–24.

    Article  CAS  Google Scholar 

  8. Porter AC, Sauer J-M, Knierman MD, Becker GW, Berna MJ, Bao J, et al. Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther. 2002;301(3):1020–4.

    Article  CAS  Google Scholar 

  9. Burston JJ, Woodhams SG. Endocannabinoid system and pain: an introduction. Proc Nutr Soc. 2014;73(1):106–17.

    Article  CAS  Google Scholar 

  10. Pérez-Morales M, La Herrán-Arita AK, Méndez-Díaz M, Ruiz-Contreras AE, Drucker-Colín R, Prospéro-García O. 2-AG into the lateral hypothalamus increases REM sleep and cFos expression in melanin concentrating hormone neurons in rats. Pharmacol Biochem Behav. 2013;108:1–7.

    Article  Google Scholar 

  11. Di Marzo V, Ligresti A, Cristino L. The endocannabinoid system as a link between homoeostatic and hedonic pathways involved in energy balance regulation. Int J Obes. 2009;33 Suppl 2:S18–24.

    Article  Google Scholar 

  12. Soria-Gómez E, Bellocchio L, Reguero L, Lepousez G, Martin C, Bendahmane M, et al. The endocannabinoid system controls food intake via olfactory processes. Nat Neurosci. 2014;17(3):407–15.

    Article  Google Scholar 

  13. Piomelli D. A fatty gut feeling. Trends Endocrinol Metab. 2013. doi:10.1016/j.tem.2013.03.001.

    Google Scholar 

  14. Fu J, Astarita G, Gaetani S, Kim J, Cravatt BF, Mackie K, et al. Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine. J Biol Chem. 2007;282(2):1518–28.

    Article  CAS  Google Scholar 

  15. Souci SW, Fachmann W, Kraut H. Food composition and nutrition tables. 7th ed. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2008.

    Google Scholar 

  16. Ding L, Wang Y, Kreuzer M, Guo X, Mi J, Gou Y, et al. Seasonal variations in the fatty acid profile of milk from yaks grazing on the Qinghai-Tibetan plateau. J Dairy Res. 2013;80(04):410–7.

    Article  CAS  Google Scholar 

  17. Albenzio M, Santillo A, Caroprese M, Ruggieri D, Napolitano F, Sevi A. Physicochemical properties of Scamorza ewe milk cheese manufactured with different probiotic cultures. J Dairy Sci. 2013;96(5):2781–91.

    Article  CAS  Google Scholar 

  18. Pintus S, Murru E, Carta G, Cordeddu L, Batetta B, Accossu S, et al. Sheep cheese naturally enriched in α-linolenic, conjugated linoleic and vaccenic acids improves the lipid profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. Br J Nutr. 2013;109(08):1453–62.

    Article  CAS  Google Scholar 

  19. Sahib NG, Anwar F, Gilani A-H, Hamid AA, Saari N, Alkharfy KM. Coriander (Coriandrum sativum L.): a potential source of high-value components for functional foods and nutraceuticals—a review. Phytother Res. 2013;27(10):1439–56.

    CAS  Google Scholar 

  20. Ellenbracht F, Barz W, Mangold HK. Unusual fatty acids in the lipids from organs and cell cultures of Petroselinum crispum. Planta. 1980;150(2):114–9.

    Article  CAS  Google Scholar 

  21. Gebauer SK, Chardigny J-M, Jakobsen MU, Lamarche B, Lock AL, Proctor SD, et al. Effects of ruminant trans fatty acids on cardiovascular disease and cancer: a comprehensive review of epidemiological, clinical, and mechanistic studies. Adv Nutr. 2011;2(4):332–54.

    Article  CAS  Google Scholar 

  22. Sommerfeld M. Trans unsaturated fatty acids in natural products and processed foods. Prog Lipid Res. 1983;22(3):221–33.

    Article  CAS  Google Scholar 

  23. Richter EK, Shawish KA, Scheeder MRL, Colombani PC. Trans fatty acid content of selected Swiss foods: the TransSwissPilot study. J Food Compos Anal. 2009;22(5):479–84.

    Article  CAS  Google Scholar 

  24. Gouveia-Figueira S, Nording ML. Development and validation of a sensitive UPLC-ESI-MS/MS method for the simultaneous quantification of 15 endocannabinoids and related compounds in milk and other biofluids. Anal Chem. 2014;86(2):1186–95.

    Article  CAS  Google Scholar 

  25. Balvers MG, Wortelboer HM, Witkamp RF, Verhoeckx KC. Liquid chromatography-tandem mass spectrometry analysis of free and esterified fatty acid N-acyl ethanolamines in plasma and blood cells. Anal Biochem. 2013;434(2):275–83.

    Article  CAS  Google Scholar 

  26. Zoerner AA, Batkai S, Suchy MT, Gutzki FM, Engeli S, Jordan J, et al. Simultaneous UPLC-MS/MS quantification of the endocannabinoids 2-arachidonoyl glycerol (2AG), 1-arachidonoyl glycerol (1AG), and anandamide in human plasma: minimization of matrix-effects, 2AG/1AG isomerization and degradation by toluene solvent extraction. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;883-884:161–71.

    Article  CAS  Google Scholar 

  27. Lam PMW, Marczylo TH, Konje JC. Simultaneous measurement of three N-acylethanolamides in human bio-matrices using ultra performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2010;398(5):2089–97.

    Article  CAS  Google Scholar 

  28. Di Marzo V, Wang J. Endocannabinoidome. London: Academic Press, an imprint of Elsevier; 2015.

    Google Scholar 

  29. Wang X, Chen Y, Jin Q, Huang J, Wang X. Synthesis of linoleoyl ethanolamide. J Oleo Sci. 2013;62(6):427–33.

    Article  CAS  Google Scholar 

  30. Dunkelblum E, Tan SH, Silk PJ. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J Chem Ecol. 1985;11(3):265–77.

    Article  CAS  Google Scholar 

  31. Zoerner AA, Gutzki FM, Batkai S, May M, Rakers C, Engeli S, et al. Quantification of endocannabinoids in biological systems by chromatography and mass spectrometry: a comprehensive review from an analytical and biological perspective. Biochim Biophys Acta. 2011;1811(11):706–23.

    Article  CAS  Google Scholar 

  32. Zoerner AA, Gutzki FM, Suchy MT, Beckmann B, Engeli S, Jordan J, et al. Targeted stable-isotope dilution GC-MS/MS analysis of the endocannabinoid anandamide and other fatty acid ethanol amides in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(26):2909–23.

    Article  CAS  Google Scholar 

  33. Fanelli F, Di Lallo VD, Belluomo I, Iasio R, Baccini M, Casadio E, et al. Estimation of reference intervals of five endocannabinoids and endocannabinoid related compounds in human plasma by two dimensional-LC/MS/MS. J Lipid Res. 2012;53(3):481–93.

    Article  CAS  Google Scholar 

  34. Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature. 2001;414(6860):209–12.

    Article  Google Scholar 

  35. Romano A, Coccurello R, Giacovazzo G, Bedse G, Moles A, Gaetani S. Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite. Biomed Res Int. 2014;2014:203425.

    Google Scholar 

  36. Romano A, Karimian Azari E, Tempesta B, Mansouri A, Di Micioni Bonaventura MV, Ramachandran D, et al. High dietary fat intake influences the activation of specific hindbrain and hypothalamic nuclei by the satiety factor oleoylethanolamide. Physiol Behav. 2014;136:55–62.

    Article  CAS  Google Scholar 

  37. Lam PM, Marczylo TH, El-Talatini M, Finney M, Nallendran V, Taylor AH, et al. Ultra performance liquid chromatography tandem mass spectrometry method for the measurement of anandamide in human plasma. Anal Biochem. 2008;380(2):195–201.

    Article  CAS  Google Scholar 

  38. Phillips APBR. Rearrangement between primary ethanolamides of carboxylic acids and corresponding aminoethylesters. J Am Chem Soc. 1947;69(2):200–4.

    Article  CAS  Google Scholar 

  39. Ottria R, Casati S, Ciuffreda P. (1)H, (13)C and (15)N NMR assignments for N- and O-acylethanolamines, important family of naturally occurring bioactive lipid mediators. Magn Reson Chem. 2012;50(12):823–8.

    Article  CAS  Google Scholar 

  40. Giuffrida A, Rodríguez de Fonseca F, Piomelli D. Quantification of bioactive acylethanolamides in rat plasma by electrospray mass spectrometry. Anal Biochem. 2000;280(1):87–93.

    Article  CAS  Google Scholar 

  41. Balvers MG, Verhoeckx KC, Witkamp RF. Development and validation of a quantitative method for the determination of 12 endocannabinoids and related compounds in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877(14-15):1583–90.

    Article  CAS  Google Scholar 

  42. Ozalp A, Barroso B. Simultaneous quantitative analysis of N-acylethanolamides in clinical samples. Anal Biochem. 2009;395(1):68–76.

    Article  CAS  Google Scholar 

  43. Roy U, Loreau O, Balazy M. Cytochrome P450/NADPH-dependent formation of trans epoxides from trans-arachidonic acids. Bioorg Med Chem Lett. 2004;14(4):1019–22.

    Article  CAS  Google Scholar 

  44. Jiang H, Kruger N, Lahiri DR, Wang D, Vatèle JM, Balazy M. Nitrogen dioxide induces cis-trans-isomerization of arachidonic acid within cellular phospholipids. Detection of trans-arachidonic acids in vivo. J Biol Chem. 1999;274(23):16235–41.

    Article  CAS  Google Scholar 

  45. Devillard E, McIntosh FM, Paillard D, Thomas NA, Shingfield KJ, Wallace RJ. Differences between human subjects in the composition of the faecal bacterial community and faecal metabolism of linoleic acid. Microbiology. 2009;155(Pt 2):513–20.

    Article  CAS  Google Scholar 

  46. Devillard E, McIntosh FM, Duncan SH, Wallace RJ. Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol. 2007;189(6):2566–70.

    Article  CAS  Google Scholar 

  47. Laverroux S, Glasser F, Gillet M, Joly C, Doreau M. Isomerization of vaccenic acid to cis and trans C18:1 isomers during biohydrogenation by rumen microbes. Lipids. 2011;46(9):843–50.

    Article  CAS  Google Scholar 

  48. Shibahara A, Yamamoto K, Takeoka M, Kinoshita A, Kajimoto G, Nakayama T, et al. Novel pathways of oleic and cis-vaccenic acid biosynthesis by an enzymatic double-bond shifting reaction in higher plants. FEBS Lett. 1990;264(2):228–30.

    Article  CAS  Google Scholar 

  49. Matsuzaka T, Shimano H, Yahagi N, Kato T, Atsumi A, Yamamoto T, et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nat Med. 2007;13(10):1193–202.

    Article  CAS  Google Scholar 

  50. Matsuzaka T, Shimano H. Elovl6: a new player in fatty acid metabolism and insulin sensitivity. J Mol Med (Berlin). 2009;87(4):379–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is part of the Neurotrition Project, which was supported by the FAU Emerging Fields Initiative. We thank Susanne Achenbach from the blood donor bank in Erlangen, Germany, for providing human blood samples, Andreas Hess for providing the infrastructure for blood taking of rats, Johannes Niebler for his expertise regarding GC–MS measurements, and Christine Meissner for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Hoch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röhrig, W., Waibel, R., Perlwitz, C. et al. Identification of the oleic acid ethanolamide (OEA) isomer cis-vaccenic acid ethanolamide (VEA) as a highly abundant 18:1 fatty acid ethanolamide in blood plasma from rats and humans. Anal Bioanal Chem 408, 6141–6151 (2016). https://doi.org/10.1007/s00216-016-9720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9720-8

Keywords

Navigation