Skip to main content
Log in

Cu2+ ion-sensitive surface on graphite electrodes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new electrochemical interface based on polyacrylic acid (PAAcid) immobilized in a Nafion® polymeric matrix on graphite screen-printed electrodes for detecting copper is presented. The copper is retained in the surface due to the capacity of the polyacid to chelate metals, and quantified using square wave voltammetry. The response was characterized by spectroscopic techniques (UV-vis-IR), which confirmed the chelation from the Cu2+ ions by the acid. A calibration curve is presented, showing good linearity and repeatability and its usefulness as a sensor. The range of operation goes from 15 to 50 μM, with a detection limit of 12 μM, making the sensor useful for measurements in environmental samples (after a preconcentration step) and in drinking water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Krstić V, Urošević T, Pešovski B. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem Eng Sci. 2018;192:273–87. https://doi.org/10.1016/j.ces.2018.07.022.

    Article  CAS  Google Scholar 

  2. Ullah N, Mansha M, Khan I, Qurashi A. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC Trends Anal Chem. 2018;100:155–66. https://doi.org/10.1016/j.trac.2018.01.002.

    Article  CAS  Google Scholar 

  3. Khairy GM, Duerkop A. Dipsticks and sensor microtiterplate for determination of copper (II) in drinking water using reflectometric RGB readout of digital images, fluorescence or eye-vision. Sensors Actuators B Chem. 2019;281:878–84. https://doi.org/10.1016/j.snb.2018.10.147.

    Article  CAS  Google Scholar 

  4. Song P, Xiang Y, Wei R, Tong A. A fluorescent chemosensor for Cu2+ detection in solution based on aggregation-induced emission and its application in fabricating Cu2+ test papers. J Lumin. 2014;153:215–20. https://doi.org/10.1016/j.jlumin.2014.03.030.

    Article  CAS  Google Scholar 

  5. Justino CIL, Freitas AC, Duarte AC, Santos TAPR. Sensors and biosensors for monitoring marine contaminants. Trends Environ Anal Chem. 2015;6–7:21–30. https://doi.org/10.1016/j.teac.2015.02.001.

    Article  CAS  Google Scholar 

  6. Stumm W, Morgan JJ. Aquatic chemistry: chemical equilibria and rates in natural waters. 3rd ed. New York: Wiley; 1996.

    Google Scholar 

  7. Rauch JN, Graedel TE. Earth’s anthrobiogeochemical copper cycle: COPPER CYCLE. Glob Biogeochem Cycles. 2007;21:n/a-n/a https://doi.org/10.1029/2006GB002850.

    Article  Google Scholar 

  8. dos Santos Carlos F, Nunes MC, De Boni L, Machado GS, Nunes FS. A novel fluorene-derivative Schiff-base fluorescent sensor for copper(II) in organic media. J Photochem Photobiol A Chem. 2017;348:41–6. https://doi.org/10.1016/j.jphotochem.2017.08.022.

    Article  CAS  Google Scholar 

  9. Santos IC, Mesquita RBR, Rangel AOSS. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters. Anal Chim Acta. 2015;891:171–8. https://doi.org/10.1016/j.aca.2015.08.021.

    Article  CAS  PubMed  Google Scholar 

  10. Frag EY, Mohamed MEB, Fahim EM. Application of carbon sensors for potentiometric determination of copper(II) in water and biological fluids of Wilson disease patients. Studying the surface reaction using SEM, EDX, IR and DFT. Biosens Bioelectron. 2018;118:122–8. https://doi.org/10.1016/j.bios.2018.07.024.

    Article  CAS  PubMed  Google Scholar 

  11. Herzog G, Moujahid W, Twomey K, Lyons C, Ogurtsov VI. On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta. 2013;116:26–32. https://doi.org/10.1016/j.talanta.2013.04.057.

    Article  CAS  PubMed  Google Scholar 

  12. Kayarkatte MK, Delikaya Ö, Roth C. Polyacrylic acid-Nafion composites as stable catalyst support in PEM fuel cell electrodes. Mater Today Commun. 2018;16:8–13. https://doi.org/10.1016/j.mtcomm.2018.02.003.

    Article  CAS  Google Scholar 

  13. Kefala G, Economou A, Voulgaropoulos A. A study of Nafion-coated bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry. Analyst. 2004;129:1082. https://doi.org/10.1039/b404978k.

    Article  CAS  PubMed  Google Scholar 

  14. Papadopoulou NA, Florou AB, Prodromidis MI. Sensitive determination of iron using disposable Nafion-coated screen-printed graphite electrodes. Anal Lett. 2018;51:198–208. https://doi.org/10.1080/00032719.2017.1302464.

    Article  CAS  Google Scholar 

  15. Vlassiouk I, Takmakov P, Smirnov S. Sensing DNA hybridization via ionic conductance through a nanoporous electrode. Langmuir. 2005;21:4776–8. https://doi.org/10.1021/la0471644.

    Article  CAS  PubMed  Google Scholar 

  16. González G, Priano G, Günther M, Battaglini F. Mass transport effect of mesoscopic domains in the amperometric response of an electroactive species: modeling for its applications in biomolecule detection. Sensors Actuators B Chem. 2010;144:349–53. https://doi.org/10.1016/j.snb.2008.11.006.

    Article  CAS  Google Scholar 

  17. El-Hashani A, Toutianoush A, Tieke B. Layer-by-layer assembled membranes of protonated 18-azacrown-6 and polyvinylsulfate and their application for highly efficient anion separation. J Phys Chem B. 2007;111:8582–8. https://doi.org/10.1021/jp0688052.

    Article  CAS  PubMed  Google Scholar 

  18. Macanás J, Ouyang L, Bruening ML, Muñoz M, Remigy J-C, Lahitte J-F. Development of polymeric hollow fiber membranes containing catalytic metal nanoparticles. Catal Today. 2010;156:181–6. https://doi.org/10.1016/j.cattod.2010.02.036.

    Article  CAS  Google Scholar 

  19. Jain P, Baker GL, Bruening ML. Applications of polymer brushes in protein analysis and purification. Annu Rev Anal Chem. 2009;2:387–408. https://doi.org/10.1146/annurev-anchem-060908-155153.

    Article  CAS  Google Scholar 

  20. Priano G, González G, Günther M, Battaglini F. Disposable gold electrode array for simultaneous electrochemical studies. Electroanalysis. 2008;20:91–7. https://doi.org/10.1002/elan.200704061.

    Article  CAS  Google Scholar 

  21. Mbareck C, Nguyen QT, Alaoui OT, Barillier D. Elaboration, characterization and application of polysulfone and polyacrylic acid blends as ultrafiltration membranes for removal of some heavy metals from water. J Hazard Mater. 2009;171:93–101. https://doi.org/10.1016/j.jhazmat.2009.05.123.

    Article  CAS  PubMed  Google Scholar 

  22. Bala T, Prasad BLV, Sastry M, Kahaly MU, Waghmare UV. Interaction of different metal ions with carboxylic acid group: a quantitative study. J Phys Chem A. 2007;111:6183–90. https://doi.org/10.1021/jp067906x.

    Article  CAS  PubMed  Google Scholar 

  23. Mehandzhiyski AY, Riccardi E, van Erp TS, Koch H, Åstrand P-O, Trinh TT, et al. Density functional theory study on the interactions of metal ions with long chain deprotonated carboxylic acids. J Phys Chem A. 2015;119:10195–203. https://doi.org/10.1021/acs.jpca.5b04136.

    Article  CAS  PubMed  Google Scholar 

  24. Basolo F, Johnson R. Coordination Chemistry. St Lucie Press; 1986.

  25. Kosseoglou D, Kokkinofta R, Sazou D. FTIR spectroscopic characterization of Nafion®–polyaniline composite films employed for the corrosion control of stainless steel. J Solid State Electrochem. 2011;15:2619–31. https://doi.org/10.1007/s10008-010-1241-3.

    Article  CAS  Google Scholar 

  26. Li W, Zhao H, Teasdale PR, John R, Zhang S. Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym. 2002;52:31–41. https://doi.org/10.1016/S1381-5148(02)00055-X.

    Article  CAS  Google Scholar 

  27. Hu H, Saniger J, Garcia-Alejandre J, Castaño VM. Fourier transform infrared spectroscopy studies of the reaction between polyacrylic acid and metal oxides. Mater Lett. 1991;12:281–5. https://doi.org/10.1016/0167-577X(91)90014-W.

    Article  CAS  Google Scholar 

  28. Lin-Vien D, editor. The handbook of infrared and raman characteristic frequencies of organic molecules. Boston: Academic Press; 1991.

    Google Scholar 

  29. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 6th ed. Hoboken: Wiley; 2009.

    Google Scholar 

  30. Smith EL, Alves CA, Anderegg JW, Porter MD, Siperko LM. Deposition of metal overlayers at end-group-functionalized thiolate monolayers adsorbed at Au. 1. Surface and interfacial chemical characterization of deposited Cu overlayers at carboxylic acid-terminated structures. Langmuir. 1992;8:2707–14.

    Article  CAS  Google Scholar 

  31. British Standard ISO 11843-2:2000, Capability of detection, Part 2: Methodology in the linear calibration case.

  32. Tatone LM, Bilos C, Skorupka CN, Colombo JC. Trace metal behavior along fluvio-marine gradients in the Samborombón Bay, outer Río de la Plata estuary, Argentina. Cont Shelf Res. 2015;96:27–33. https://doi.org/10.1016/j.csr.2015.01.007.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by UBA, CONICET, ANPCyT, and OPCW. L. M. and G. G. are research staff of CONICET. I. P. acknowledges CONICET for his postdoctoral fellowship. The authors wish to thank Jorge Diebra and Paula Orellano for getting the real seawater sample and Leonardo Carlos Autelli for getting the real river water sample.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ignacio Pedre or Graciela Alicia González.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedre, I., Méndez De Leo, L.P. & González, G.A. Cu2+ ion-sensitive surface on graphite electrodes. Anal Bioanal Chem 411, 7761–7770 (2019). https://doi.org/10.1007/s00216-019-02142-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02142-0

Keywords

Navigation