Skip to main content
Log in

Reference method for off-line analysis of nitrogen oxides in cell culture media by an ozone-based chemiluminescence detector

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) and its by-products are important biological signals in human physiology and pathology particularly in the vascular and immune systems. Thus, in situ determination of the NO-related molecule (NOx) levels using embedded sensors is of high importance particularly in the context of cellular biocompatibility testing. However, NOx analytical reference method dedicated to the evaluation of biomaterial biocompatibility testing is lacking. Herein, we demonstrate a PAPA-NONOate-based reference method for the calibration of NOx sensors. After, the validation of this reference method and its potentialities were demonstrated for the detection of the oxidative stress-related NO secretion of vascular endothelial cells in a 3D tissue issued from 3D printing. Such NOx detection method can be an integral part of cell response to biomaterials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim J, Koo BK, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol [Internet]. Springer US; 2020;21(10):571–84. Available from: https://doi.org/10.1038/s41580-020-0259-3.

  2. Azizipour N, Avazpour R, Rosenzweig DH, Sawan M, Ajji A. Evolution of biochip technology: a review from lab-on-a-chip to organ-on-a-chip. Micromachines. 2020;11(6):599–614.

    Article  Google Scholar 

  3. Pollet AMAO, den Toonder JMJ. Recapitulating the vasculature using organ-on-chip technology. Bioengineering. 2020;7(1):1–18.

    Article  Google Scholar 

  4. Kodzius R, Schulze F, Gao X, Schneider MR. Organ-on-chip technology: current state and future developments. Genes (Basel). 2017;8(266):8–10.

    Google Scholar 

  5. Shrestha J, Ghadiri M, Shanmugavel M, Razavi Bazaz S, Vasilescu S, Ding L, et al. A rapidly prototyped lung-on-a-chip model using 3D-printed molds. Organs-on-a-Chip [Internet]. Elsevier Ltd; 2019;1:100001. Available from: https://doi.org/10.1016/j.ooc.2020.100001.

  6. Wu S, Chen-Yu C, Kimberly L, Gregory FP, Bentley WE. Chip mudularity enables molecular information acess from organ-on-chip devices with quality control. Sensors Actuators B Chem. 2019;295:30–9.

    Article  Google Scholar 

  7. Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Shaegh SAM, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A. 2017;114(12):E2293–302.

    Article  CAS  Google Scholar 

  8. Salzitsa A, Kassanos Panagiotis YG-Z. Multi-parametric rigid and flexible, low-cost, disposable sensing platforms for biomedica applications. Biosens Bioelectron. 2018;102:668–75.

    Article  Google Scholar 

  9. Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol. 2006;147(1):193–201.

    Article  Google Scholar 

  10. Luiking YC, Engelen MPKJ, Deutz NE. Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr Metab Care [Internet]. 2010;13(1):97–104. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953417/.

  11. Coleman JW. Nitric oxide in immunity and inflammation. Int Immunopharmacol. 2001;1(8):1397–406.

    Article  CAS  Google Scholar 

  12. Farah C, Michel LYM, Balligand JL. Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol. 2018;15(5):292–316.

    Article  CAS  Google Scholar 

  13. Schuman EM, Madison DV. Nitric oxide and angiogenesis. J Neuro-Oncol. 2000;272(50):139–48.

    Google Scholar 

  14. Wang J, Song M, Chen B, Wang L, Zhu R. Effects of pH and H2O2 on ammonia, nitrite, and nitrate transformations during UV254nm irradiation: implications to nitrogen removal and analysis. Chemosphere [Internet]. Elsevier Ltd; 2017;184:1003–11. Available from: https://doi.org/10.1016/j.chemosphere.2017.06.078.

  15. Dubbe H, Bühner F, Nieken U. Rapid estimation of NO oxidation kinetic data from experiments. Chemie-Ingenieur-Technik. 2019;91(1):167–9.

    Article  CAS  Google Scholar 

  16. Hakim TS, Sugimori K, Camporesi EM, Andersen G. Half-life of nitric oxide in aqueous solutions with and without haemoglobin. Physiol Meas. 1996;17(4):267–77.

    Article  CAS  Google Scholar 

  17. Evan HM, Mark SH. Analytical chemistry of nitric oxide. Annu Rev Anal Chem. 2009;3:409–33.

    Google Scholar 

  18. Pinder AG, Rogers SC, Khalatbari A, Ingram TE, James PE. The measurement of nitric oxide and its metabolites in biological samples by ozone-based chemiluminescence. Methods Mol Biol. 2008;476:11–28. https://doi.org/10.1007/978-1-59745-129-1_2.

  19. Tsui CT, MacGillivray SR, Weber SM, McAllister L, Churchward MA, Dennison CR, et al. Applying a novel 3D hydrogel cell culture to investigate activation of microglia due to rotational kinematics associated with mild traumatic brain injury. J Mech Behav Biomed Mater [Internet]. Elsevier Ltd; 2020;(in press). Available from: https://doi.org/10.1016/j.jmbbm.2020.104176.

  20. Khazaei MR, Nasr-Esfahani MH, Chobsaz F, Khazaei M. Noscapine inhibiting the growth and angiogenesis of human eutopic endometrium of endometriosis patients through expression of apoptotic genes and nitric oxide reduction in three-dimensional culture model. Iran J Pharm Res. 2019;18(2):836–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang B, Chen R, Gao H, Lv X, Chen L, Wang W, et al. A comparative study unraveling the effects of TNF-α stimulation on endothelial cells between 2D and 3D culture. Biomed Mater. 2020;15(6):065018. https://doi.org/10.1088/1748-605X/ab95e3.

  22. Hurst RD, Clark JB. The utility of the nitric oxide electrochemical sensor in biomedical research. Sensors. 2003;3(8):321–9.

    Article  CAS  Google Scholar 

  23. Zhang Q, Wei D, Liu J. In vivo reversal of doxorubicin resistance by (-)-epigallocatechin gallate in a solid human carcinoma xenograft. Cancer Lett. 2004;208(2):179–86.

    Article  CAS  Google Scholar 

  24. Brown MD, Schoenfisch MH. Electrochemical nitric oxide sensors: principles of design and characterization. Chem Rev. 2019;119(22):11551–75.

    Article  CAS  Google Scholar 

  25. Park K, Jeong H, Tanum J, Yoo JC, Hong J. Poly-L-lysine/poly-L-glutamic acid-based layer-by-layer self-assembled multilayer film for nitric oxide gas delivery. J Ind Eng Chem [Internet]. The Korean Society of Industrial and Engineering Chemistry; 2019;69:263–8. Available from: https://doi.org/10.1016/j.jiec.2018.09.005.

  26. Mukosera GT, Liu T, Ishtiaq Ahmed AS, Li Q, Sheng MHC, Tipple TE, et al. Detection of dinitrosyl iron complexes by ozone-based chemiluminescence. Nitric Oxide Biol Chem. 2018;79(July):57–67.

  27. Li H, Liu W, Kan R. A compact low-noise photodiode detection system for chemiluminescence nitric oxide analyzer. Rev Sci Instrum [Internet]. 2019;90(4):2–5. Available from: https://doi.org/10.1063/1.5082400.

  28. Schiller B, Hammer J, Barben J, Trachsel D. Comparability of a hand-held nitric oxide analyser with online and offline chemiluminescence-based nitric oxide measurement. Pediatr Allergy Immunol. 2009;20(7):679–85.

    Article  Google Scholar 

  29. Korn S, Wilk M, Voigt S, Weber S, Keller T, Buhl R. Measurement of fractional exhaled nitric oxide: comparison of three different analysers. Respiration. 2020;99(1):1–8.

    Article  CAS  Google Scholar 

  30. Murthy VR, Escobar H, Norberg M, Lachica CI, Gratny LL, Sherman AK, et al. A novel method of measuring fractional exhaled nitric oxide in tracheostomized ventilator-dependent children. Respir Care. 2017;62(5):595–601.

    Article  Google Scholar 

  31. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37.

    Article  Google Scholar 

  32. Stuehr DJ. Enzymes of the L-arginine to nitric oxide pathway. J Nutr. 2004;134(10):2748S–51S.

    Article  CAS  Google Scholar 

  33. Bradley SA, Steinert JR. Characterisation and comparison of temporal release profiles of nitric oxide generating donors. J Neurosci Methods [Internet]. Elsevier B.V.; 2015;245:116–24. Available from: https://doi.org/10.1016/j.jneumeth.2015.02.024.

  34. Coneski PN, Schoenfisch MH. Nitric oxide release: part III. Measurement and reporting. Chem Soc Rev. 2012;41(10):3753–8.

    Article  CAS  Google Scholar 

  35. Cao GJ, Fisher CM, Jiang X, Chong Y, Zhang H, Guo H, et al. Platinum nanoparticles: an avenue for enhancing the release of nitric oxide from: S -nitroso- N -acetylpenicillamine and S -nitrosoglutathione. Nanoscale. 2018;10(23):11176–85.

    Article  CAS  Google Scholar 

  36. Keefer LK, Nims RW, Davies KM, Wink DA. NONOates as nitric oxide donors: convenient nitric oxide dosage forms. Methods Enzymol. 1996;268:281–93.

    Article  CAS  Google Scholar 

  37. Hrabie JA, Klose JR, Wink DA, Keefer LK. New nitric oxide-releasing zwitterions derived from polyamines. J Org Chem. 1993;58(6):1472–6.

    Article  CAS  Google Scholar 

  38. Micro T, Vessels R. Reduction of biological effluents in purge and trap micro reatcion vessels and detection of endothelium-derived nitric oxide (Endo) by Chemiluminescence. J Mol Cell Cardiol. 1991;23:389–93.

    Article  Google Scholar 

  39. Samouilov A, Zweier JL. Development of chemiluminescence-based methods for specific quantitation of nitrosylated thiols. Anal Biochem. 1998;258(2):322–30.

    Article  CAS  Google Scholar 

  40. Castiaux AD, Spence DM, Martin RS. Review of 3D cell culture with analysis in microfluidic systems. Anal Methods R Soc Chem. 2019;11(33):4220–32.

    Google Scholar 

  41. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures – a comparison of different.pdf. Arch Med Sci. 2018;14(4):910–9.

    PubMed  Google Scholar 

  42. Vrana NE, Cahill PA, McGuinness GB. Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: effect of disturbed shear stress conditions. J Biomed Mater Res - Part A. 2010;94(4):1080–90.

    Google Scholar 

  43. Knopf-Marques H, Barthes J, Lachaal S, Mutschler A, Muller C, Dufour F, et al. Multifunctional polymeric implant coatings based on gelatin, hyaluronic acid derivative and chain length-controlled poly(arginine). Mater Sci Eng. 2019;104:109898. https://doi.org/10.1016/j.msec.2019.109898.

  44. Knopf-Marques H, Barthes J, Wolfova L, Vidal B, Koenig G, Bacharouche J, et al. Auxiliary biomembranes as a directional delivery system to control biological events in cell-laden tissue-engineering scaffolds. ACS Omega. 2017;2(3):918–29.

    Article  CAS  Google Scholar 

Download references

Funding

PANBioRA project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 760921.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayman Chmayssem or Pascal Mailley.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chmayssem, A., Monsalve-Grijalba, K., Alias, M. et al. Reference method for off-line analysis of nitrogen oxides in cell culture media by an ozone-based chemiluminescence detector. Anal Bioanal Chem 413, 1383–1393 (2021). https://doi.org/10.1007/s00216-020-03102-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-03102-9

Keywords

Navigation