Skip to main content
Log in

A novel peptide-based fluorescent probe for highly selective detection of mercury (II) ions in real water samples and living cells based on aggregation-induced emission effect

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new fluorescent probe TPE-GHK was synthesized containing a tetrastyrene (TPE) derivative as fluorophore and classical tripeptide (Gly-His-Lys-NH2) as a receptor based on the aggregation-induced emission (AIE) mechanism. TPE-GHK displayed high selectivity and rapid fluorescent “turn-on” response to Hg2+ among other competitive metal ions. The 2:1 complex binding mechanism of TPE-GHK toward Hg2+ was verified by fluorometric titration, Job’s plots, and ESI-HRMS spectra. The fluorescent emission showed a good linear response in the range of 0–1.0 μM with the low detection limit of 28.6 nM. Meanwhile, TPE-GHK exhibited the excellent biocompatibility and low toxicity and was successfully applied in monitoring Hg2+ in living CAKI 2 cells, which demonstrated its potential application in environment and biological science. More importantly, TPE-GHK could be used to detect Hg2+ in two real water samples and also was successfully designed as test strips.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Clarkson TW, Magos L, Myers GJ. The toxicology of mercury–current exposures and clinical manifestations. N Engl J Med. 2003;349:1731–7.

    Article  CAS  PubMed  Google Scholar 

  2. Renzoni A, Zino F, Franchi E. Mercury levels along the food chain and risk forexposed populations. Environ Res. 1998;77:68–72.

    Article  CAS  PubMed  Google Scholar 

  3. Watras C, Back R, Halvorsen S, Hudson R, Morrison K, Wente S. Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ. 1998;219:183–208.

    Article  CAS  PubMed  Google Scholar 

  4. Wolfe MF, Schwarzbach S, Sulaiman RA. Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem. 1998;17:146–60.

    Article  CAS  Google Scholar 

  5. Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for detection of lead cadmium, and mercury ions. Chem Soc Rev. 2012;41:3210–44.

    Article  CAS  PubMed  Google Scholar 

  6. Yang YK, Yook KJ, Tae J. A rhodamine–based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J Am Chem Soc. 2005;127:16760–1.

    Article  CAS  PubMed  Google Scholar 

  7. Coskun A, Akkaya EU. Signal ratio amplification via modulation of resonance energy transfer: proof of principle in an emission ratiometric Hg (II) sensor. J Am Chem Soc. 2006;128:14474–5.

    Article  CAS  PubMed  Google Scholar 

  8. Yuan G, Lv HH, Liu H, He HP, Sun Q, Zhang XH, et al. Hemicyanine–based colorimetric and near-infrared fluorescent off–on probe for Hg2+ detection and imaging in living cells and zebrafish. Dyes Pigments. 2020;183:108674.

    Article  CAS  Google Scholar 

  9. Lv HS, Sun HY. A novel coumarin–benzopyrylium based near–infrared fluorescent probe for Hg2+ and its practical applications. Spectrochim Acta Part A. 2022;267:120527.

    Article  CAS  Google Scholar 

  10. Zhang ZW, Zhang D, Guo J, Li M, Wang TL, Yin HY, et al. An anthraquinone–based “turn–on” fluorescence probe for Hg2+ detection and its application in cell imaging. Inorg Chem Commun. 2021;130:108753.

    Article  CAS  Google Scholar 

  11. Meng XY, Wang JB, Li X, Sun Q, Tu QD, Liu XH, et al. A large Stokes shift probe based enhanced ICT strategy for Hg2+–detection in cancer cells and zebrafish. Microchem J. 2021;169:106551.

    Article  CAS  Google Scholar 

  12. Zhang Y, Liu CY, Su MJ, Rong XD, Wang X, Wang K, et al. A highly selective barbiturate-based fluorescent probe for detecting Hg2+ in cells and zebrafish as well as in real water samples. J Photochem Photobiol A Chem. 2022;425:113706.

    Article  CAS  Google Scholar 

  13. Liu JF, Li J, Tang J, Yang XP, Zhang D, Zhang Y, et al. Mitochondria-targeted NIR fluorescent probe for sensing Hg2+/HSO3 and its intracellular applications. Talanta. 2021;234:122606.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao M, Guo YS, Fu GD, Wang Q, Sheng WL, Guo DS. Development of a Si–rhodamine–based NIR fluorescence probe for highly specific and quick response of Hg2+ and its applications to biological imaging. Microchem J. 2021;171:106855.

    Article  CAS  Google Scholar 

  15. Liu B, Liu J, He JP, Zhang JS, Zhou HJ, Gao C. A novel red–emitting fluorescent probe for the highly selective detection of Hg2+ ion with AIE mechanism. Chem Phys. 2020;539:110944.

    Article  CAS  Google Scholar 

  16. Wen D, Deng XK, Xu GN, Wu HR, Yu YH. A novel FRET fluorescent probe based on BODIPY–rhodamine system for Hg2+ imaging in living cells. J Mol Struct. 2021;1236:130323.

    Article  CAS  Google Scholar 

  17. Jiang YH, Li HW, Chen RF, Liu W, Chen CY, Li ZG, et al. Novel fluorescent probe based on dicoumarin for rapid on–site detection of Hg2+ in loess. Spectrochim Acta Part A. 2021;251:119438.

    Article  CAS  Google Scholar 

  18. Neupane LN, Neupane JY, Park JH, Park KH. Turn–on fluorescent chemosensor based on an amino acid for Pb (II) and Hg (II) ions in aqueous solutions and role of tryptophan for sensing. Org Lett. 2013;15:254–7.

    Article  CAS  PubMed  Google Scholar 

  19. Wang P, An Y, Wu J. Highly sensitive turn-on detection of mercury(II) in aqueous solutions and live cells with a chemosensor based on tyrosine. Spectrochim Acta Part A. 2020;230:118004.

    Article  CAS  Google Scholar 

  20. Lohani R, Neupane LN, Kim JM, Kim KH. Selectively and sensitively monitoring Hg2+ in aqueous buffer solutions with fluorescent sensors based on unnatural amino acids. Sensors Actuators B Chem. 2012;161:1088–96.

    Article  CAS  Google Scholar 

  21. Wang P, Xue SR, Yang XP. Highly selective and sensitive detection of hydrogen sulfide in aqueous medium and live cells using peptide–based bioprobe to mimic the binding sites of the ceruloplasmin for Cu(II) ions. Biosens Bioelectron. 2020;163:112283.

    Article  CAS  PubMed  Google Scholar 

  22. Yang MH, Thirupathi P, Lee KH. Selective and sensitive ratiometric detection of Hg (II) ions using a simple amino acid based sensor. Org Lett. 2011;13:5028–31.

    Article  CAS  PubMed  Google Scholar 

  23. Wang P, Sun LY, Wu J, Yang XP, Lin PC, Wang M. A dual–functional colorimetric and fluorescent peptide–based probe for sequential detection of Cu2+ and S2- in 100% aqueous buffered solutions and living cells. J Hazard Mater. 2021;407:124388.

    Article  CAS  PubMed  Google Scholar 

  24. Neupane LN, Lee KH. Selective and sensitive turn on detection of Hg2+ in aqueous solution using a thioether–appended dipeptide. Tetrahedron Lett. 2013;54:5007–10.

    Article  CAS  Google Scholar 

  25. Lohani CR, Kim JM, Lee KH. Two dansyl fluorophores bearing amino acid for monitoring Hg2+ in aqueous solution and live cells. Tetrahedron. 2011;67:4130–6.

    Article  CAS  Google Scholar 

  26. Neupane LN, Kim JM, Lohani CR, Lee KH. Selective and sensitive ratiometric detection of Hg2+ in 100% aqueous solution with triazole–based dansyl probe. J Mater Chem. 2012;22:4003–8.

    Article  CAS  Google Scholar 

  27. Wang P, Xue SR, Zhou DG, Guo ZQ, Wang QF, Guo BX, et al. Peptide–based colorimetric and fluorescent dual-functional probe for sequential detection of copper(II) and cyanide ions and its application in real water samples, test strips and living cells. Spectrochim Acta Part A. 2022;276:121222.

    Article  CAS  Google Scholar 

  28. Luo J, Xie Z, Lam JWY, Cheng L, Chen H, Qiu C, et al. Aggregation–induced emission of 1–methyl–1,2,3,4,5–pentaphenylsilole. Chem Commun. 2001;18:1740–1.

    Article  Google Scholar 

  29. Alam P, Leung NLC, Zhang J, Kwok RTK, Lam JWY, Tang BZ. AIE–based luminescence probes for metal ion detection. Coord Chem Rev. 2021;429:213693.

    Article  CAS  Google Scholar 

  30. Zhang Q, Zhang P, Gong Y, Ding CF. Two–photon AIE based fluorescent probe with large stokes shift for selective and sensitive detection and visualization of hypochlorite. Sensors Actuators B Chem. 2019;278:73–81.

    Article  CAS  Google Scholar 

  31. Wu YQ, Wen XY, Fan ZF. An AIE active pyrene based fluorescent probe for selective sensing Hg2+ and imaging in live cells. Spectrochim Acta Part A. 2019;223:117315.

    Article  CAS  Google Scholar 

  32. Yang JT, Yang BS, Wen GM, Liu B. Dual sites fluorescence probe for H2S and Hg2+ with “AIE transformers” function. Sensors Actuators B Chem. 2019;296:126670.

    Article  CAS  Google Scholar 

  33. Clark M, Cramer RD III, Cramer NV III. Validation of the general purpose Tripos 5.2 force field. J Comput Chem. 1989;10:982–1012.

    Article  CAS  Google Scholar 

  34. Humphrey W, Humphrey A, Schulten K. VMD: visual molecular dynamics. J Mol Graph Model. 1996;14:33–8.

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.

    Article  CAS  Google Scholar 

  36. Beck AD, Density–functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys. 1993;98:5648–52.

    Article  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb M.A, Cheeseman JR, et al. Gaussian 09, Revision A.01, Gaussian, Inc.,Wallingford, CT, 2009.

  38. Zucchero AJ, McGrier PL, Bunz UHF. Cross-conjugated cruciform fluorophores. Acc Chem Res. 2010;43:397–408.

    Article  CAS  PubMed  Google Scholar 

  39. Stobiecka M, Molinero AA, Chałupa A, Hepel M. Mercury/homocysteine ligation–induced ON/OFF–switching of a T–T mismatch–based oligonucleotide molecular beacon. Anal Chem. 2012;84:4970–8.

    Article  CAS  PubMed  Google Scholar 

  40. Stobiecka M, Chałupa A. Biosensors based on molecular beacons. Chem Pap. 2015;69(1):62–76.

    Article  CAS  Google Scholar 

  41. Stobiecka M, Dworakowska B, Jakielaa S, Lukasiaka A, Chałupa A, Zembrzycki K. Sensing of survivin mRNA in malignant astrocytes using graphene oxide nanocarrier–supported oligonucleotide molecular beacons. Sensors Actuators B Chem. 2016;235:136–45.

    Article  CAS  Google Scholar 

  42. Stobiecka M, Ratajczak K, Jakiela S. Toward early cancer detection: Focus on biosensing systems and biosensors for an anti–apoptotic protein survivin and survivin mRNA. Biosens Bioelectron. 2019;137:58–71.

    Article  CAS  PubMed  Google Scholar 

  43. Stobiecka M. Novel plasmonic field–enhanced nanoassay for trace detection of proteins. Biosens Bioelectron. 2014;55:379–85.

    Article  CAS  PubMed  Google Scholar 

  44. Stobiecka M, Chałupa A. Modulation of plasmon–enhanced resonance energy transfer to gold nanoparticles by protein survivin channeled–shell gating. J Phys Chem B. 2015;119:13227–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Application Foundation Project of Science and Technology Department of Sichuan Province (No. 2021YJ0409, 2021YJ0323), the Opening Project of Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities (No. 2021JXY02), and the Fundamental Research Funds of China West Normal University (No. CXTD2020-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Wang or Fang Liao.

Ethics declarations

Conflict of interest

The authors declare co competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1(DOC 3279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Xue, S., Chen, B. et al. A novel peptide-based fluorescent probe for highly selective detection of mercury (II) ions in real water samples and living cells based on aggregation-induced emission effect. Anal Bioanal Chem 414, 4717–4726 (2022). https://doi.org/10.1007/s00216-022-04094-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04094-4

Keywords

Navigation