Skip to main content

Advertisement

Log in

Comprehensive profiling and kinetic studies of glycated lysine residues in human serum albumin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lysine residues of proteins slowly react with glucose forming Amadori products. In hyperglycemic conditions, such as diabetes mellitus, this non-enzymatic glycation becomes more pervasive causing severe medical complications. The structure and conformation of a protein predisposes lysine sites to differing reactivity influenced by their steric availability and amino acid microenvironment. The goal of our study was to identify these sites in albumin and measure glycation affinities of lysine residues. We applied a bottom-up approach utilizing a combination of three LC–MS instruments: timsTOF, Orbitrap, and QTRAP. To prove applicability to samples of varying glycemic status, we compared in vitro glycated and non-glycated HSA, as well as diabetic and non-diabetic individual samples. The analysis of lysine glycation affinities based on peptide intensities provide a semi-quantitative approach, as the results depend on the mass spectrometry platform used. We found that glycation levels based on multiple reaction monitoring (MRM) quantitation better reflect individual glycemic status and that the glycation percentage for each site is in linear relation to all other sites. To develop an approach which more accurately reflects glycation affinity, we developed a kinetics model which uses results from stable isotope dilution HPLC-MRM methodology. Through glycation of albumin at different glucose concentrations, we determine the rate constants of glycation for every lysine residue by simultaneous comparative analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843.

  2. DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. The Lancet. 2018;391:2449–62. https://doi.org/10.1016/S0140-6736(18)31320-5.

    Article  Google Scholar 

  3. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clinical Diabetes. 2008;26:77–82. https://doi.org/10.2337/diaclin.26.2.77.

    Article  Google Scholar 

  4. Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65A:963–75. https://doi.org/10.1093/gerona/glq074.

    Article  CAS  PubMed Central  Google Scholar 

  5. Ceriello A, Catrinoiu D, Chandramouli C, Cosentino F, Dombrowsky AC, Itzhak B, et al. Heart failure in type 2 diabetes: current perspectives on screening, diagnosis and management. Cardiovasc Diabetol. 2021;20:218. https://doi.org/10.1186/s12933-021-01408-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107:1058–70. https://doi.org/10.1161/CIRCRESAHA.110.223545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother. 2018;108:656–62. https://doi.org/10.1016/j.biopha.2018.09.058.

    Article  CAS  PubMed  Google Scholar 

  8. Brownlee M. The pathobiology of diabetic complications. Diabetes. 2005;54:1615–25. https://doi.org/10.2337/diabetes.54.6.1615.

    Article  CAS  PubMed  Google Scholar 

  9. Rendra E, Riabov V, Mossel DM, Sevastyanova T, Harmsen MC, Kzhyshkowska J. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology. 2019;224:242–53. https://doi.org/10.1016/j.imbio.2018.11.010.

    Article  CAS  PubMed  Google Scholar 

  10. Awasthi S, Saraswathi NT. Non-enzymatic glycation mediated structure–function changes in proteins: case of serum albumin. RSC Adv. 2016;6:90739–53. https://doi.org/10.1039/C6RA08283A.

    Article  CAS  Google Scholar 

  11. Shaikh-Kader A, Houreld NN, Rajendran NK, Abrahamse H. The link between advanced glycation end products and apoptosis in delayed wound healing. Cell Biochem Funct. 2019;37:432–42. https://doi.org/10.1002/cbf.3424.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng Q, Omans ND, Leicher R, Osunsade A, Agustinus AS, Finkin-Groner E, et al. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nat Commun. 2019;10:1289. https://doi.org/10.1038/s41467-019-09192-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergman M, Abdul-Ghani M, DeFronzo RA, Manco M, Sesti G, Fiorentino TV, et al. Review of methods for detecting glycemic disorders. Diabetes Res Clin Pract. 2020;165: 108233. https://doi.org/10.1016/j.diabres.2020.108233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shin A, Connolly S, Little R, Kabytaev K. Quantitation of glycated albumin by isotope dilution mass spectrometry. Clin Chim Acta. 2021;521:215–22. https://doi.org/10.1016/j.cca.2021.07.020.

    Article  CAS  Google Scholar 

  15. Priego-Capote F, Scherl A, Möller M, Waridel P, Lisacek F, Sanchez J-C. Glycation isotopic labeling with 13C-reducing sugars for quantitative analysis of glycated proteins in human plasma. Mol Cell Proteomics. 2010;9:579–92. https://doi.org/10.1074/mcp.M900439-MCP200.

    Article  CAS  PubMed  Google Scholar 

  16. Rathore R, Sonwane BP, Jagadeeshaprasad MG, Kahar S, Santhakumari B, Unnikrishnan AG, et al. Glycation of glucose sensitive lysine residues K36, K438 and K549 of albumin is associated with prediabetes. J Proteomics. 2019;208: 103481. https://doi.org/10.1016/j.jprot.2019.103481.

    Article  CAS  PubMed  Google Scholar 

  17. Gkogkolou P, Böhm M. Advanced glycation endproducts in aging skin. Mechanisms linking aging, diseases, and biological age estimation, Boca Raton, FL: CRC Press, Taylor & Francis Group; 2017, p. 100–11.

  18. Priego-Capote F, Ramírez-Boo M, Finamore F, Gluck F, Sanchez J-C. Quantitative analysis of glycated proteins. J Proteome Res. 2014;13:336–47. https://doi.org/10.1021/pr4000398.

    Article  CAS  PubMed  Google Scholar 

  19. do Nascimento de Oliveira V, Barbosa Moreira Lima Neto A, Fraga van Tilburg M, de Oliveira Monteiro-Moreira AC, Duarte Pinto Lobo M, Rondina D, et al. Proteomic analysis to identify candidate biomarkers associated with type 1 diabetes. Diabetes Metab Syndr Obes. 2018;11:289–301. https://doi.org/10.2147/DMSO.S162008

  20. Barnaby OS, Cerny RL, Clarke W, Hage DS. Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta. 2011;412:277–85. https://doi.org/10.1016/j.cca.2010.10.018.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Zhang Q. Glycated plasma proteins as more sensitive markers for glycemic control in type 1 diabetes. PROTEOMICS – Clin Appl. 2020;14:1900104. https://doi.org/10.1002/prca.201900104

  22. Wang ZA, Cole PA. The chemical biology of reversible lysine post-translational modifications. Cell Chem Biol. 2020;27:953–69. https://doi.org/10.1016/j.chembiol.2020.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berg AH, Drechsler C, Wenger J, Buccafusca R, Hod T, Kalim S, et al. Carbamylation of serum albumin as a risk factor for mortality in patients with kidney failure. Sci Transl Med. 2013;5. https://doi.org/10.1126/scitranslmed.3005218

  24. Kong AT, Leprevost F v, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat Methods. 2017;14:513–20. https://doi.org/10.1038/nmeth.4256

  25. Yu F, Haynes SE, Teo GC, Avtonomov DM, Polasky DA, Nesvizhskii AI. Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant. Mol Cell Proteomics. 2020;19:1575–85. https://doi.org/10.1074/mcp.TIR120.002048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohzuma T, Koga M. Lucica GA-L glycated albumin assay kit: a new diagnostic test for diabetes mellitus. Mol Diagn Ther. 2010;14:49–51. https://doi.org/10.1007/BF03256353.

    Article  CAS  PubMed  Google Scholar 

  27. Chapelle J-P, Teixeira J, Maisin D, Assink H, Barla G, Stroobants AK, et al. Multicentre evaluation of the Tosoh HbA1c G8 analyser. Clin Chem Lab Med 2010;48. https://doi.org/10.1515/CCLM.2010.062

  28. Baynes JW, Thorpe SR, Murtiashaw MH. [8] Nonenzymatic glucosylation of lysine residues in albumin, 1984, p. 88–98. https://doi.org/10.1016/0076-6879(84)06010-9

  29. Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng Des Select. 1999;12:439–46. https://doi.org/10.1093/protein/12.6.439

  30. Fraczkiewicz R, Braun W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comput Chem. 1998;19:319–33. https://doi.org/10.1002/(SICI)1096-987X(199802)19:3%3c319::AID-JCC6%3e3.0.CO;2-W.

    Article  CAS  Google Scholar 

  31. Bhattacharya AA, Curry S, Franks NP. Binding of the general anesthetics propofol and halothane to human serum albumin. J Biol Chem. 2000;275:38731–8. https://doi.org/10.1074/jbc.M005460200.

    Article  CAS  PubMed  Google Scholar 

  32. Zheng Q, Maksimovic I, Upad A, David Y. Non-enzymatic covalent modifications: a new link between metabolism and epigenetics. Protein Cell. 2020;11:401–16. https://doi.org/10.1007/s13238-020-00722-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frasca A, Xue Y, Kossar AP, Keeney S, Rock C, Zakharchenko A, et al. Glycation and serum albumin infiltration contribute to the structural degeneration of bioprosthetic heart valves. JACC Basic Transl Sci. 2020;5:755–66. https://doi.org/10.1016/j.jacbts.2020.06.008

  34. Cloos PAC, Christgau S. Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology. 2004;5:139–58. https://doi.org/10.1023/B:BGEN.0000031152.31352.8b.

    Article  CAS  PubMed  Google Scholar 

  35. Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther. 2016;4:3. https://doi.org/10.1186/s40591-016-0048-8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ghiggeri GM, Candiano G, Delfino G, Bianchini F, Queirolo C. Glycosyl albumin and diabetic microalbuminuria: demonstration of an altered renal handling. Kidney Int. 1984;25:565–70. https://doi.org/10.1038/ki.1984.55.

    Article  CAS  PubMed  Google Scholar 

  37. Kowluru A, Kowluru RA, Solomon S, Martinez L. Protein glycation: effects upon protein recognition by the proximal tubule. Life Sci. 1992;50:281–6. https://doi.org/10.1016/0024-3205(92)90335-M.

    Article  CAS  PubMed  Google Scholar 

  38. Jacobs MJ, Pinger CW, Castiaux AD, Maloney KJ, Spence DM. A novel 3D-printed centrifugal ultrafiltration method reveals in vivo glycation of human serum albumin decreases its binding affinity for zinc. Metallomics. 2020;12:1036–43. https://doi.org/10.1039/d0mt00123f.

    Article  CAS  PubMed  Google Scholar 

  39. Nakajou K, Watanabe H, Kragh-Hansen U, Maruyama T, Otagiri M. The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants. Biochim Biophys Acta. 2003;1623:88–97. https://doi.org/10.1016/j.bbagen.2003.08.001

  40. Tsuchiya S, Sakurai T, Sekiguchi S-I. Nonenzymatic glucosylation of human serum albumin and its influence on binding capacity of sulfonylureas. Biochem Pharmacol. 1984;33:2967–71. https://doi.org/10.1016/0006-2952(84)90595-1.

    Article  CAS  PubMed  Google Scholar 

  41. Ascoli GA, Domenici E, Bertucci C. Drug binding to human serum albumin: abridged review of results obtained with high-performance liquid chromatography and circular dichroism. Chirality. 2006;18:667–79. https://doi.org/10.1002/chir.20301.

    Article  CAS  PubMed  Google Scholar 

  42. Gajahi Soudahome A, Catan A, Giraud P, Assouan Kouao S, Guerin-Dubourg A, Debussche X, et al. Glycation of human serum albumin impairs binding to the glucagon-like peptide-1 analogue liraglutide. J Biol Chem. 2018;293:4778–91. https://doi.org/10.1074/jbc.M117.815274.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Qiu H, Jin L, Chen J, Shi M, Shi F, Wang M, et al. Comprehensive glycomic analysis reveals that human serum albumin glycation specifically affects the pharmacokinetics and efficacy of different anticoagulant drugs in diabetes. Diabetes. 2020;69:760–70. https://doi.org/10.2337/db19-0738.

    Article  CAS  PubMed  Google Scholar 

  44. Wang S-H, Wang T-F, Wu C-H, Chen S-H. In-depth comparative characterization of hemoglobin glycation in normal and diabetic bloods by LC-MSMS. J Am Soc Mass Spectrom. 2014;25:758–66. https://doi.org/10.1007/s13361-014-0830-2.

    Article  CAS  PubMed  Google Scholar 

  45. Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, et al. Review: Glycation of human serum albumin. Clin Chim Acta. 2013;425:64–76. https://doi.org/10.1016/j.cca.2013.07.013.

    Article  CAS  PubMed  Google Scholar 

  46. Garlick RL, Mazer JS. The principal site of nonenzymatic glycosylation of human serum albumin in vivo. J Biol Chem. 1983;258:6142–6. https://doi.org/10.1016/S0021-9258(18)32384-6

    Article  CAS  Google Scholar 

  47. Frolov A, Hoffmann R. Identification and relative quantification of specific glycation sites in human serum albumin. Anal Bioanal Chem. 2010;397:2349–56. https://doi.org/10.1007/s00216-010-3810-9.

    Article  CAS  PubMed  Google Scholar 

  48. Kisugi R, Kouzuma T, Yamamoto T, Akizuki S, Miyamoto H, Someya Y, et al. Structural and glycation site changes of albumin in diabetic patient with very high glycated albumin. Clin Chim Acta. 2007;382:59–64. https://doi.org/10.1016/j.cca.2007.04.001.

    Article  CAS  PubMed  Google Scholar 

  49. Barnaby OS, Cerny RL, Clarke W, Hage DS. Quantitative analysis of glycation patterns in human serum albumin using 16O/18O-labeling and MALDI–TOF MS. Clin Chim Acta. 2011;412:1606–15. https://doi.org/10.1016/j.cca.2011.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Q, Monroe ME, Schepmoes AA, Clauss TRW, Gritsenko MA, Meng D, et al. Comprehensive identification of glycated peptides and their glycation motifs in plasma and erythrocytes of control and diabetic subjects. J Proteome Res. 2011;10:3076–88. https://doi.org/10.1021/pr200040j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rabbani N, Ashour A, Thornalley PJ. Mass spectrometric determination of early and advanced glycation in biology. Glycoconj J. 2016;33:553–68. https://doi.org/10.1007/s10719-016-9709-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gil H, Salcedo D, Romero R. Effect of phosphate buffer on the kinetics of glycation of proteins. J Phys Org Chem. 2005;18:183–6. https://doi.org/10.1002/poc.872.

    Article  CAS  Google Scholar 

  53. Minami T, Terada T, Takahashi T, Arikawa H, Matsuyama Y, Kizaki K, et al. Comparative studies on the heterogeneity of plasma-derived and recombinant human albumins in laboratory use. Int J Biol Macromol. 2014;69:79–87. https://doi.org/10.1016/j.ijbiomac.2014.05.010.

    Article  CAS  PubMed  Google Scholar 

  54. Kumari N, Bandyopadhyay D, Kumar V, Venkatesh DB, Prasad S, Prakash S, et al. Glycation of albumin and its implication in diabetes: a comprehensive analysis using mass spectrometry. Clin Chim Acta. 2021;520:108–17. https://doi.org/10.1016/j.cca.2021.06.001.

    Article  CAS  PubMed  Google Scholar 

  55. Sabbioni G, Berset J-D, Day BW. Is it realistic to propose determination of a lifetime internal exposome? Chem Res Toxicol. 2020;33:2010–21. https://doi.org/10.1021/acs.chemrestox.0c00092.

    Article  CAS  PubMed  Google Scholar 

  56. Carlsson H, Rappaport S, Törnqvist M. Protein adductomics: methodologies for untargeted screening of adducts to serum albumin and hemoglobin in human blood samples. High-Throughput. 2019;8:6. https://doi.org/10.3390/ht8010006.

    Article  CAS  PubMed Central  Google Scholar 

  57. Maciążek-Jurczyk M, Szkudlarek A, Chudzik M, Pożycka J, Sułkowska A. Alteration of human serum albumin binding properties induced by modifications: a review. Spectrochim Acta Part A Mol Biomol Spectrosc. 2018;188:675–83. https://doi.org/10.1016/j.saa.2017.05.023.

    Article  CAS  Google Scholar 

  58. Malka R, Nathan DM, Higgins JM. Mechanistic modeling of hemoglobin glycation and red blood cell kinetics enables personalized diabetes monitoring. Sci Transl Med. 2016;8. https://doi.org/10.1126/scitranslmed.aaf9304

Download references

Acknowledgements

We would like to thank Gehrke Proteomics Center and Molecular Interaction Core (University of Missouri, Columbia, USA) for peptide syntheses, CD experiments, and LC-MS acquisitions (timsTOF, Orbitrap).

Author information

Authors and Affiliations

Authors

Contributions

Aleks Shin and Yahor Vazmitsel: investigation, data curation, writing—review and editing. Shawn Connolly: conceptualization, writing—review and editing. Kuanysh Kabytaev: conceptualization, methodology, writing—original draft, supervision.

Corresponding author

Correspondence to Kuanysh Kabytaev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1396 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, A., Vazmitsel, Y., Connolly, S. et al. Comprehensive profiling and kinetic studies of glycated lysine residues in human serum albumin. Anal Bioanal Chem 414, 4861–4875 (2022). https://doi.org/10.1007/s00216-022-04108-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04108-1

Keywords

Navigation