Skip to main content
Log in

Physicochemical and functional characterization of the galactomannan obtained from mesquite seeds (Prosopis pallida)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this work was to carry out the physicochemical and functional characterization of the purified galactomannan obtained from mesquite seed’s endosperm (MSG). From the seeds, a MSG content of 13/100 g with a purity of 94/100 g was determined. The dispersions of MSG samples (up to 5 g/100 mL) exhibited a shear thinning non-Newtonian behavior, with 35.68 mPa.s of viscosity, and surface tension values between 43.5 and 61.06 dynes/cm. The chromatographic analysis revealed a 1.1:1 mannose/galactose ratio, with a molecular weight between 900,000 and 1,000,000 Da. The calorimetric analysis showed a specific vitreous transition temperature of 52.92 °C. The values of apparent viscosity were superior to those of commercial galactomannans, which indicates that MSG can be used too as a thickening agent. The obtained results provide information, which contribute to a better knowledge of MSG, in order to consider its sustainable exploitation in a future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Becker R, Sayre R, Saunders R (1984) J Am Oil Chem Soc 61:931–938

    Article  CAS  Google Scholar 

  2. Rzedowski J (1988) Acta Bot Mex 3:7–19

    Google Scholar 

  3. Maldonado A (2000) El mezquite en México: rasgos de importancia productiva y necesidades de desarrollo. In: Frías J (ed) El mezquite, árbol de usos múltiples. Estado actual del conocimiento en México, Universidad de Guanajuato, México, pp 37–50

    Google Scholar 

  4. Felker P (1996) Commercializing mesquite, leucaena and cactus in Texas. In: Janick J (ed) Progress in new crops, ASHS Press, Alexandria, pp 133–137

  5. Hernández A, Ramos E, Falcony C, Salazar J (2001) An approximation to calorimetric analysis on dispersions at different concentrations of mesquite (Prosopis sp.) and locust bean (Ceratonia sp.) seed gums. In: Welti J, Barbosa G, Aguilera J (eds) Proceedings of the eighth international congress on engineering and food, vol 1. Technomic, USA, pp 211–215

  6. Leung D, Bewley J, Reid J (1981) Planta 153:95–100. doi:10.1007/BF00384089

    Article  CAS  Google Scholar 

  7. Pinto I et al (2007) NMR study of galactomannans from the seeds of mesquite tree (Prosopis juliflora (Sw) DC). Food Chem 101:70–73. doi:10.1016/j.foodchem.2005.11.052

    Article  CAS  Google Scholar 

  8. Glicksmann M (1969) Gum technology in the food industry. Academic Press, USA

    Google Scholar 

  9. Meyer D, Becker R, Gumbnam M (1986) J Agric Food Chem 34:914–919. doi:10.1021/jf00071a037

    Article  CAS  Google Scholar 

  10. Vázquez M (1988) Rev Agroquim Tecnol Alim 28:251–260

    Google Scholar 

  11. Romeo M (1989) Alimentos 4:23–27

    Google Scholar 

  12. Figuereido A (1990) Food Technol 118–128

  13. Bravo L, Grados N, Saura F (1994) J Sci Food Agric 65:303–306

    Article  CAS  Google Scholar 

  14. Hernández A, Ramos E, Falcony C, Salazar J (2004) Latin Am Appl Res 34:195–202

    Google Scholar 

  15. Sierakowski M, Milas M, Besbrieres J, Rinaudo M (2000) Carb Polym 42:51–57. doi:10.1016/S0144-8617(99) 00137-X

    Article  CAS  Google Scholar 

  16. International AOAC (1997) Official methods of analysis, 16th edn, 3rd revision. Association of Official Anlytical Chemists. Washington, DC, USA

    Google Scholar 

  17. Dubois M, Gilles K, Hamilton J, Roberts P, Smith F (1956) Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  18. Van de Kamer J, Van Ginkel L (1952) Cereal Chem 29:239–251

    Google Scholar 

  19. Lawrence J, Lyengar J (1985) J Chromatogr 350:237–244. doi:10.1016/S0021-9673(01) 93522-8

    Article  CAS  Google Scholar 

  20. Fry J (1996) Biological data analysis. A practical approach. OIRC Press, USA, p 418

  21. Del Valle F, Escobedo M, Muñoz M, Ortega R, Bourges H (1983) J Food Sci 48:914–919

    Article  CAS  Google Scholar 

  22. Gallao M, Furtado R, Brito E (2005) J Sci Food Agric 85:2321–2324. doi:10.1002/jsfa.2279

    Article  CAS  Google Scholar 

  23. Estévez A, Sáenz C, Hurtado M, Escobar B, Espinoza S, Suárez C (2004) J Sci Food Agric 84:1487–1492. doi:10.1002/jsfa.1795

    Article  CAS  Google Scholar 

  24. Goycoolea F, Morris E, Gidley M (1995) Carb Polym 27:69–71. doi:10.1016/0144-8617(95) 00030-B

    Article  CAS  Google Scholar 

  25. Whistler R (1993) Industrial gums, polysaccharide and their derivatives. Academic Press, USA, p 642

  26. Egorov A, Meshtechkina N, Shcherbukhin V (2003) Appl Biochem Microbiol 39:398–402

    Article  CAS  Google Scholar 

  27. Meshtechkina N, Anulov O, Shcherbukhin V (1998) Appl Biochem Microbiol 34:497–500

    Google Scholar 

  28. Anulov O, Meshtechkina N, Shcherbukhin V (1997) Appl Biochem Microbiol 33:564–566

    Google Scholar 

  29. Anulov O, Smirnova N, Meshtechkina N, Shreter I, Shcherbukhin V (1995) Appl Biochem Microbiol 31:550–553

    Google Scholar 

  30. Samil Kök M (2007) Carb Polym 70:68–76. doi:10.1016/j.carbpol.2007.03.003

    Article  CAS  Google Scholar 

  31. Edwards M, Bulpin P, Dea I, Reid J (1989) Planta 178(1):41–51. doi:10.1007/BF00392525

    Google Scholar 

  32. Edwards M, Scott C, Gidley M, Reid T (1992) Planta 187:67–74. doi:10.1007/BF00201625

    Article  CAS  Google Scholar 

  33. Dea I, Morrison A (1975) Adv Carbohydr Chem Biochem 31:241–312

    Article  CAS  Google Scholar 

  34. Reid J (1985) Adv Bot Res 11:125–155

    Article  CAS  Google Scholar 

  35. Reid J, Meier H (1970) Phytochem 9:513–520. doi:10.1016/S0031-9422(00) 85682-4

    Article  CAS  Google Scholar 

  36. Steffe J (1996) Rheological methods in food process engineering. Freeman Press, USA, p 418

  37. Sharma S (1981) Food Technol 59–67

  38. Mewis J (1979) J Non Newtonian Fluid Mech 6:1–20. doi:10.1016/0377-0257(79) 87001-9

    Article  CAS  Google Scholar 

  39. Kaya V, Picard G (1996) Bioresour Technol 56:147–155. doi:10.1016/0960-8524(96) 00013-2

    Article  CAS  Google Scholar 

  40. Garti N, Madar Z, Aserin A, Sternheim B (1997) Food Sci Technol 30:305–311. doi:10.1006/fstl.1996.0179

    CAS  Google Scholar 

  41. McClements D (1999) Food emulsions. CRC Press, USA, p 378

  42. Ander P, Sonnessa A (1973) Principios de química. LIMUSA. México, pp 426–429

  43. Bresolin T, Milas M, Rinaudo M, Ganter J (1998) Int J Biol Macromol 23:263–275. doi:10.1016/S0141-8130(98) 00061-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financing through the grant EU STD-3 number CT-94-0341, to Prof. F. Saura-Calixto and Dr. L. Bravo from IF of CSIC-Madrid; to N. Grados of University of Piura-Peru, and to the scholarship 144306 granted by CONACYT-Mexico to LCM. They also appreciate the technical support of P. Méndez-Castrejón, and M. Márquez-Robles from CINVESTAV-IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Ramos-Ramírez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaires-Martínez, L., Salazar-Montoya, J.A. & Ramos-Ramírez, E.G. Physicochemical and functional characterization of the galactomannan obtained from mesquite seeds (Prosopis pallida). Eur Food Res Technol 227, 1669–1676 (2008). https://doi.org/10.1007/s00217-008-0892-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-008-0892-0

Keywords

Navigation