Skip to main content
Log in

Evaluation of angiotensin I-converting enzyme (ACE) inhibitory activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates generated by gastrointestinal proteases: identification of the most potent active peptide

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this study, smooth hound protein hydrolysates (SHPHs), obtained by treatment with various gastrointestinal proteases, were analyzed for their angiotensin I-converting enzyme (ACE) inhibitory activities. Protein hydrolysates were obtained by treatment with crude alkaline enzyme extract, low molecular weight (LMW) alkaline protease, trypsin-like protease and pepsin from Mustelus mustelus, and bovine trypsin. All hydrolysates exhibited inhibitory activity toward ACE. Hydrolysate generated with alkaline protease extract displayed the highest ACE inhibitory activity, and the higher inhibition activity (82.6% at 2 mg/mL) was obtained with a hydrolysis degree of 18.8%. This hydrolysate was then fractionated by size exclusion chromatography on a Sephadex G-25 into five major fractions (P1–P5). ACE inhibitory activities of all fractions were assayed, and P3 was found to display a high ACE inhibitory activity (62.24% at 1 mg/mL). P3 was then fractionated by reversed-phase high-performance liquid chromatography (RP-HPLC) and ten fractions of ACE inhibitors were found (F1–F10). Sub-fraction F3 showed the strongest ACE inhibitory activity, being able to suppress more than 60% of initial enzyme activity at a concentration of 100 μg/mL. The amino acid sequence of peptide F3 was determined by ESI/MS and ESI–MS/MS as Ala-Gly-Ser, and the IC50 value for ACE inhibitory activity was 0.13 ± 0.03 mg/mL. Further, purified peptide F3 maintained inhibitory activity even after in vitro digestion with gastrointestinal proteases in order to demonstrate gastrointestinal stability digestion to enable oral application. These results indicate that smooth hound protein hydrolysate possesses potent antihypertensive activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SHPH:

Smooth hound protein hydrolysate

ACE:

Angiotensin-converting enzyme

LMW:

Low molecular weight

DH:

Degree of hydrolysis

References

  1. Scheidegger KJ, Butler S, Witztum JL (1997) J Biochem Chem 272:21609–21615

    CAS  Google Scholar 

  2. Ondetti MA, Rubin B, Cushman DW (1982) Annu Rev Biochem 51:283–288

    Article  CAS  Google Scholar 

  3. Fujita H, Yokoyama K, Yoshikawa M (2000) J Food Sci 65:564–569

    Article  CAS  Google Scholar 

  4. Kuster DJ, Marshall GR (2005) J Comput Aided Mol Des 19:609–615

    Article  CAS  Google Scholar 

  5. Meisel H, Goepfert A, Guenther S (1997) Milchwissenschaft 52:307–311

    CAS  Google Scholar 

  6. Cheung HS, Wang FL, Miguel AO, Emily FS, David WC (1980) J. Biol Chem 255:401–407

    CAS  Google Scholar 

  7. Ferreira SH, Bartelt DC, Greene LJ (1970) Biochemistry 9:2583–2593

    Article  CAS  Google Scholar 

  8. Silva SV, Malcata FX (2005) Int Dairy J 15:1–15

    Article  CAS  Google Scholar 

  9. Marczak ED, Usui A, Fujita H, Yang Y, Yokoo M, Lipkowski AW et al (2003) Peptides 24:791–798

    Article  CAS  Google Scholar 

  10. Lee DH, Kim JH, Park JS, Choi YJ, Lee JS (2004) Peptides 25:621–627

    Article  CAS  Google Scholar 

  11. Vermeirssen VA (2004) Biochimie 86:231–239

    Article  CAS  Google Scholar 

  12. Arihara K, Nakashima Y, Mukai T, Ishikawa S, Itoh M (2001) Meat Sci 57:319–324

    Article  CAS  Google Scholar 

  13. Kim SK, Byun HG, Park PJ, Shahidi F (2001) J Agric Food Chem 49:2992–2997

    Article  CAS  Google Scholar 

  14. Kuba M, Tana C, Tawata S, Yasuda M (2005) Process Biochem 40:2191–2196

    Article  CAS  Google Scholar 

  15. Saito Y, Wanezaki K, Kawato A, Imayasu S (1994) Biosci Biotechnol Biochem 58:1767–1771

    Article  CAS  Google Scholar 

  16. Fahmi A, Morimura S, Guo HS, Shigematsu T, Kida K, Uemurac Y (2004) Process Biochem 39:1195–1200

    Article  CAS  Google Scholar 

  17. Bougatef A, Nedjar-Arroume N, Ravallec-Plé R, Leroy Y, Guillochon D, Barkia A, Nasri M (2008) Food Chem 111:350–356

    Article  CAS  Google Scholar 

  18. Hyun CK, Shin HK (2000) Process Biochem 36:65–71

    Article  CAS  Google Scholar 

  19. Yu Y, Hu J, Bai X, Du Y, Lin B (2006) Process Biochem 41:1589–1593

    Article  CAS  Google Scholar 

  20. Costa EL, Gontijo JAR, Netto FM (2007) Int Dairy J 17:632–640

    Article  CAS  Google Scholar 

  21. Matsui T, Matsufuji H, Seki E, Osajima K, Nakashima M, Osajima Y (1993) Biosci Biotechnol Biochem 57:922–925

    Article  CAS  Google Scholar 

  22. Bougatef A, Hajji M, Balti R, Lassoued I, Triki-Ellouz Y, Nasri M (2009) Food Chem 114:1198–1205

    Article  CAS  Google Scholar 

  23. Khantaphant S, Benjakul S (2008) Comp Biochem Physiol 151B:410–419

    CAS  Google Scholar 

  24. Bougatef A, Balti R, Ben Zaied S, Souissi N, Nasri M (2008) Food Chem 107:774–784

    Article  CAS  Google Scholar 

  25. Bougatef A, Jellouli K, Balti R, Haddar A, Triki-Ellouz Y, Barkia A, Nasri M (2008) In: Koeffer EN (ed) Progress in food chemistry. Nova Science, pp 183–199. ISBN: 978-1-60456-303-0

  26. Bougatef A, Balti R, Jellouli K, Triki-Ellouz Y, Nasri M (2008) In Nasri M (ed) Recent research developments in food by-products technology and biotechnology. Research signpost, pp 1–19. ISBN: 978-81-308-0259-6

  27. Kembhavi AA, Kulkarni A, Pant A (1993) Appl Biochem Biotechnol 38:83–92

    Article  CAS  Google Scholar 

  28. Adler-Nissen J (1986) In: Adler-Nissen J (eds) Enzymic hydrolysis of food proteins. Elsevier, Copenhagen, pp 57–109

  29. Hoyle NT, Merritt JH (1994) J Food Sci 59:76–79

    Article  CAS  Google Scholar 

  30. Nakamura Y, Yamamoto N, Sakai K, Okubo A, Yamazaki S, Takano T (1995) J Dairy Sci 78:777–783

    Article  CAS  Google Scholar 

  31. Wu J, Ding X (2002) Food Res Int 35:367–375

    Article  CAS  Google Scholar 

  32. Kristinsson HG, Rasco BA (2000) J. Agric Food Chem 48:657–666

    Article  CAS  Google Scholar 

  33. van der Ven C, Gruppen H, de Bont DBA, Voragen AG (2002) J Int. Dairy J 12:813–820

    Article  Google Scholar 

  34. He HL, Chen XL, Wu H, Sun CY, Zhang YZ, Zhou BC (2007) Bioresour Technol 98:3499–3505

    Article  CAS  Google Scholar 

  35. Yokoyama K, Chiba H, Yoshikawa K, Chiba H, Yoshikawa M (1992) Biosci Biotech Biochem 56:1541–1545

    Article  CAS  Google Scholar 

  36. Ono S, Hosokawa M, Miyashita K, Takahashi K (2005) Int J Food Sci Technol 41:383–386

    Google Scholar 

  37. Matsufuji H, Matsui T, Seki E, Osajima K, Nakashima M, Osajima Y (1994) Biosci Biotech Biochem 58:2244–2245

    Article  CAS  Google Scholar 

  38. Panyam D, Kilara A (1996) Trends Food Sci. Technol. 7:120–125

    CAS  Google Scholar 

  39. Jérôme T, Laurent M, Jean-Luc G (2002) FEBS Lett 531:369–374

    Article  Google Scholar 

  40. Lee JR, Kwon DY, Shin HK, Yang CB (1999) Food Sci Biotechnol 8:172–178

    Google Scholar 

  41. Mullally MM, Meisel H, FitzGerald RJ (1997) FEBS Lett 402:99–101

    Article  CAS  Google Scholar 

  42. Meisel H (1997) Biopolymers 43:119–128

    Article  CAS  Google Scholar 

  43. Wu J, Ding X (2001) J Agric Food Chem 49:501–506

    Article  CAS  Google Scholar 

  44. Wu J, Aluko RE, Nakai S (2006) J Agric Food Chem 54:732–738

    Article  CAS  Google Scholar 

  45. Turner AJ, Hooper NM (1992) Trends Pharmacol Sci 23:177–183

    Article  Google Scholar 

  46. Gobbetti M, Ferranti P, Smacchi E, Goffredi F, Addeo F (2000) Appl Environ Microbiol 9:3898–3904

    Article  Google Scholar 

  47. Sheih IC, Fang TJ, Wu TK (2009) Food Chem 115:279–284

    Article  CAS  Google Scholar 

  48. Wang J, Hu J, Cui J, Xuefang B, Dua Y, Miyaguchi Y, Lin B (2008) Food Chem 111:302–308

    Article  CAS  Google Scholar 

  49. Je JY, Park PJ, Kwon JY, Kim SKA (2004) J. Agric Food Chem 52:7842–7845

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by Ministry of Higher Education and Scientific Research-Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bougatef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bougatef, A., Balti, R., Nedjar-Arroume, N. et al. Evaluation of angiotensin I-converting enzyme (ACE) inhibitory activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates generated by gastrointestinal proteases: identification of the most potent active peptide. Eur Food Res Technol 231, 127–135 (2010). https://doi.org/10.1007/s00217-010-1260-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1260-4

Keywords

Navigation