Skip to main content
Log in

Macro-element ratios provide improved identification of the botanical origin of mono-floral honeys

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Major macronutrient concentrations (K, Ca, Mg, Na, P, and S) and element ratios were determined in 140 Hungarian mono-floral honey samples (acacia, linden, sunflower, rape, chestnut, forest, silk grass, and facelia) by inductively coupled plasma-optical emission spectrometry (ICP-OES). One-way ANOVA (LSD and Dunnett T3 test) and linear discriminant analysis (LDA) were used to determine the botanical origin based on the element content and element ratio of different honey types. Analysing six element concentrations in the honeys of different botanical origin with LDA allowed the botanical origin of 96% of honeys to be predicted. Reducing the examined elements to K, Mg, and Na increased the accuracy of predictions, but it was still not possible to distinguish acacia and facelia honeys. However, examination of element ratios showed that K/Na and K/Mg ratios were able to separate every honey type from each other with 100% cross-validation. It is concluded that using macro-element ratios rather than macro-element concentrations, it is possible to precisely discriminate the floral origin of honey samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gulyás S, Bartók T, Stefanik K (1983) Adatok a nektár és a méz fémeselem tartalmához. Méhészet 31:4

    Google Scholar 

  2. Alvarez-Suarez JM, Tulipani S, Romandini S, Bertoli E, Battino M (2010) Contribution of honey in nutrition and human health: a review. Med J Nutrition Metab 3:15–23

    Article  Google Scholar 

  3. Crane E (1975) Honey: comprehensive survey. Heinemenn, London, p 608

    Google Scholar 

  4. Feldman Zs (2016) Hungarian Apiary National Program. Földművelésügyi Minisztérium, Budapest

    Google Scholar 

  5. Czipa N, Novák A, Kovács B (2016) Fajtamézek botanikai eredetének vizsgálata (analysis of the botanical origins of monofloral honey types). Élelmvizsg Közl (J Food Invest) 62(4):1317–1324

    Google Scholar 

  6. Nayik GA, Suhag Y, Majid I, Nanda V (2016) Discrimination of high altitude Indian honey by chemometric approach according to their antioxidant properties and macro minerals. J Saudi Soc Agric Sci. https://doi.org/10.1016/j.jssas.2016.04.004

    Article  Google Scholar 

  7. Kaygusuz H, Tezcan F, Bedia Erim F, Yildiz O, Sahin H, Can Z, Kolayli S (2016) Characterization of Anatolian honeys based on minerals, bioactive components and principal component analysis. LWT Food Sci Technol 68:273–279

    Article  CAS  Google Scholar 

  8. Belay A, Haki GD, Birringer M, Borck H, Addi A, Baye K, Melaku S (2017) Rheology and botanical origin of Ethiopian monofloral honey. LWT Food Sci Technol 75:393–401

    Article  CAS  Google Scholar 

  9. Kortesniemi M, Slupsky CM, Ollikka T, Kauko L, Spevacek AR, Sjövall O, Yang B, Kallio H (2016) NMR profiling clarifies the characterization of Finnish honeys of different botanical origins. Food Res Int 86:83–92

    Article  CAS  Google Scholar 

  10. Popek S, Halagarda M, Kursa K (2017) A new model to identify botanical origin of Polish honeys based on the physicochemical parameters and chemometric analysis. LWT Food Sci Technol 77:482–487

    Article  CAS  Google Scholar 

  11. Oroian M, Amariei S, Leahu A, Gutt G (2015) Multi-element composition of honey as a suitable tool for its authenticity analysis. Pol J Food Nutr Sci 65(2):93–100

    CAS  Google Scholar 

  12. Czipa N, Diósi G, Phillips C, Kovács B (2017) Examination of honeys and flowers as soil element indicator. Environ Monit Assess 189:412

    Article  PubMed  Google Scholar 

  13. MSZ 6950-3:1977: MÉZ–Mikroszkópos vizsgálat,

  14. Kovács B, Győri Z, Prokisch J, Loch J, Dániel P (1996) A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. Commun Soil Sci Plant Anal 27(5–8):1177–1198

    Article  Google Scholar 

  15. Bilandzic N, Gačić M, Ðokić M, Sedak M, Šipušić DI, Končurat A, Gajger IT (2014) Major and trace elements levels in multifloral and unifloral honeys in Croatia. J Food Comp Anal 33:132–138

    Article  CAS  Google Scholar 

  16. Bontempo L, Camin F, Ziller L, Perini M, Nicolini G, Larcher R (2016) Isotopic and elemental composition of selected types of Italian honey. Measurement 98:283–289

    Article  Google Scholar 

  17. Di Bella G, Lo Turco V, Potorti AG, Bua GD, Fede MR, Dugo G (2015) Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J Food Comp Anal 44:25–35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolett Czipa.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Compliance with ethics requirements

There has not been any research involving human or animal participants performed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czipa, N., Alexa, L., Phillips, C.J.C. et al. Macro-element ratios provide improved identification of the botanical origin of mono-floral honeys. Eur Food Res Technol 244, 1439–1445 (2018). https://doi.org/10.1007/s00217-018-3057-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3057-9

Keywords

Navigation