Skip to main content
Log in

Lee–Yang Theorems and the Complexity of Computing Averages

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the complexity of computing average quantities related to spin systems, such as the mean magnetization and susceptibility in the ferromagnetic Ising model, and the average dimer count (or average size of a matching) in the monomer-dimer model. By establishing connections between the complexity of computing these averages and the location of the complex zeros of the partition function, we show that these averages are #P-hard to compute, and hence, under standard assumptions, computationally intractable. In the case of the Ising model, our approach requires us to prove an extension of the famous Lee–Yang Theorem from the 1950s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal M., Kayal N., Saxena N.: PRIMES is in P. Ann. Math. 160(2), 781–793 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora S., Barak B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Asano T.: Lee–Yang theorem and the Griffiths inequality for the anisotropic Heisenberg ferromagnet. Phys. Rev. Lett. 24(25), 1409–1411 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  4. Biskup, M.: (2012). Personal Communication

  5. Biskup M., Borgs C., Chayes J., Kleinwaks L., Kotecký R.: Partition function zeros at first-order phase transitions: a general analysis. Commun. Math. Phys. 251(1), 79–131 (2004)

    Article  ADS  MATH  Google Scholar 

  6. Biskup M., Borgs C., Chayes J., Kotecký R.: Partition function zeros at first-order phase transitions: Pirogov–Sinai theory. J. Stat. Phys. 116(1), 97–155 (2004)

    Article  ADS  MATH  Google Scholar 

  7. Borcea J., Brändén P.: The Lee–Yang and Pólya-Schur programs. I. Linear operators preserving stability. Invent. Math. 177(3), 541–569 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Borcea J., Brändén P.: Pólya-Schur master theorems for circular domains and their boundaries. Ann. Math. 170(1), 465–492 (2009)

    Article  MATH  Google Scholar 

  9. Brune, O.: Synthesis of a finite two-terminal network whose driving-point impedance is a prescribed function of frequency. Sc. D. Thesis, MIT (1931)

  10. Bulatov A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53, 66–120 (2006)

    Article  MathSciNet  Google Scholar 

  11. Bulatov A., Grohe M.: The complexity of partition functions. Theor. Comput. Sci. 348(2–3), 148–186 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cai, J.Y., Chen, X.: Complexity of counting CSP with complex weights. In: Proc. ACM Symp. Theory Comput. (STOC) 2012, pp. 909–920. ACM, New York (2012)

  13. Cai, J.Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: A dichotomy theorem. In: Proc. Int. Colloq. Autom. Lang. Program. (ICALP) 2010, pp. 275–286. Springer, Berlin (2010)

  14. Cai, J.Y., Kowalczyk, M.: A dichotomy for k-regular graphs with {0, 1}-vertex assignments and real edge functions. In: Proc. Conf. Theory Appl. Model. Comput. (TAMC) 2010, pp. 328–339. Springer, Berlin (2010)

  15. Choe Y.B., Oxley J.G., Sokal A.D., Wagner D.G.: Homogeneous multivariate polynomials with the half-plane property. Adv. Appl. Math. 32(1–2), 88–187 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chudnovsky M., Seymour P.: The roots of the independence polynomial of a clawfree graph. J. Comb. Theory Ser. B 97(3), 350–357 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Clark R.: The Routh–Hurwitz stability criterion, revisited. IEEE Control Syst. 12(3), 119–120 (1992)

    Article  Google Scholar 

  18. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. ACM Symp. Theory Comput. (STOC) 1971, pp. 151–158. ACM, New York (1971)

  19. Dyer M.E., Greenhill C.S.: The complexity of counting graph homomorphisms. Random Struct. Algorithms 17(3–4), 260–289 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Edmonds J.: Paths, trees, and flowers. Can. J. Math. 17(0), 449–467 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  21. Edmonds J.: Systems of distinct representatitives and linear algebra. J. Res. Natl. Bur. Stand. Sect. B 71B(4), 241–245 (1967)

    Article  MathSciNet  Google Scholar 

  22. Goldberg L.A., Grohe M., Jerrum M., Thurley M.: A complexity dichotomy for partition functions with mixed signs. SIAM J. Comput. 39(7), 3336–3402 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Goldberg L.A., Jerrum M., Paterson M.: The computational complexity of two-state spin systems. Random Struct. Algorithms 23, 133–154 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Griffiths R.B.: Correlations in Ising ferromagnets. Int. J. Math. Phys. 8(3), 478–483 (1967)

    Article  ADS  Google Scholar 

  25. Heilmann O.J., Lieb E.H.: Monomers and dimers. Phys. Rev. Lett. 24(25), 1412–1414 (1970)

    Article  ADS  Google Scholar 

  26. Heilmann O.J., Lieb E.H.: Theory of monomer–dimer systems. Commun. Math. Phys. 25(3), 190–232 (1972)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Jerrum M., Valiant L.G., Vazirani V.V.: Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  28. Karp, R.M.: Reducibility among combinatorial problems. In: Proc. Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

  29. Laguerre, E.: Sur les fonctions du genre zéro et du genre un. C. R. Acad. Sci. 98 (1882)

  30. Lee T.D., Yang C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87(3), 410–419 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Levin L.A.: Universal search problems. Probl. Inf. Transm. 9(3), 265–266 (1973)

    Google Scholar 

  32. Macon N., Dupree D.E.: Existence and uniqueness of interpolating rational functions. Am. Math. Monthly 69(8), 751–759 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  33. Newman C.M.: Zeros of the partition function for generalized Ising systems. Commun. Pure Appl. Math. 27(2), 143–159 (1974)

    Article  Google Scholar 

  34. Newman C.M.: The GHS inequality and the Riemann hypothesis. Constr. Approx. 7(1), 389–399 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Papadimitriou C.H.: Computational Complexity. Addison-Wesley, Boston (1994)

    MATH  Google Scholar 

  36. Pólya G., Schur I.: Über zwei Arten von Faktorenfolgen in der Theorie der Algebraischen Gleichungen. J. Reine Angew. Math. 144, 89–113 (1914)

    MATH  Google Scholar 

  37. Ruelle D.: Statistical Mechanics. W. A. Benjamin Inc., Detroit (1983)

    Google Scholar 

  38. Sly, A.: Computational transition at the uniqueness threshold. In: Proc. IEEE Symp. Found. Comput. Sci. (FOCS) 2010, pp. 287–296. IEEE Computer Society, New York (2010)

  39. Sly, A., Sun, N.: The computational hardness of counting in two-spin models on d-regular graphs. In: Proc. IEEE Symp. Found. Comput. Sci. (FOCS) 2012, pp. 361–369. IEEE Computer Society, New York (2012)

  40. Suzuki M., Fisher M.E.: Zeros of the partition function for the Heisenberg, ferroelectric, and general Ising models. J. Math. Phys. 12(2), 235–246 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  41. Valiant L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  42. Valiant L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  43. Weitz, D.: Counting independent sets up to the tree threshold. In: Proc. ACM Symp. Theory Comput. (STOC) 2006, pp. 140–149. ACM, New York (2006)

  44. Yang C.N., Lee T.D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 87(3), 404–409 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Srivastava.

Additional information

Communicated by F. Toninelli

An extended abstract of this paper appeared in the proceedings of the annual ACM Symposium on the Theory of Computing (STOC), 2013, pp. 625–634.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinclair, A., Srivastava, P. Lee–Yang Theorems and the Complexity of Computing Averages. Commun. Math. Phys. 329, 827–858 (2014). https://doi.org/10.1007/s00220-014-2036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2036-7

Keywords

Navigation