Skip to main content
Log in

Relaxation to Equilibrium in the One-Dimensional Thin-Film Equation with Partial Wetting and Linear Mobility

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the large time behavior of compactly supported smooth solutions for a one-dimensional thin-film equation with linear mobility in the regime of partial wetting. We show the stability of steady state solutions. Relaxation rates are obtained for initial data which are close to a steady state in a suitable sense. The proof uses the Lagrangian coordinates. Our method is to establish and exploit differential relations between the energy and the dissipation as well as some interpolation inequalities. Our result is different from earlier results because here we consider solutions with finite mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almgren, R.: Singularity formation in Hele–Shaw bubbles. Phys. Fluids 8, 344–352 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bernis, F., Peletier, L.A., Williams, S.M.: Source type solutions of a fourth order nonlinear degenerate parabolic equation. Nonlinear Anal. 18, 217–234 (1992)

    Article  MathSciNet  Google Scholar 

  3. Bertozzi, A.L.: The mathematics of moving contact lines in thin liquid films. Not. Am. Math. Soc. 45, 689–697 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Bertsch, M., Giacomelli, L., Karali, G.: Thin-film equations with ‘partial wetting’ energy: existence of weak solutions. Physica D 209, 17–27 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, Berlin (2011)

    MATH  Google Scholar 

  6. Carlen, E.A., Ulusoy, S.: An entropy dissipation-entropy estimate for a thin film type equation. Commun. Math. Sci. 3, 171–178 (2005)

    Article  MathSciNet  Google Scholar 

  7. Carlen, E.A., Ulusoy, S.: Asymptotic equipartition and long time behavior of solutions of a thin-film equation. J. Differ. Equ. 241, 279–292 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Carlen, E.A., Ulusoy, S.: Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete Contin. Dyn. Syst. 34, 4537–4553 (2014)

    Article  MathSciNet  Google Scholar 

  9. Carrillo, J.A., Toscani, G.: Long-time asymptotics for strong solutions of the thin film equation. Commun. Math. Phys. 225, 551–571 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chiricotto, M., Giacomelli, L.: Weak solutions to thin-film equations with contact-line friction. Interfaces Free Bound. 19, 243–271 (2017)

    Article  MathSciNet  Google Scholar 

  11. Esselborn, E.: Relaxation rates for a perturbation of a stationary solution to the thin-film equation. SIAM J. Math. Anal. 48, 349–396 (2016)

    Article  MathSciNet  Google Scholar 

  12. Giacomelli, L., Gnann, M.V., Knüpfer, H., Otto, F.: Well-posedness for the Navier-slip thin-film equation in the case of complete wetting. J. Differ. Equ. 257, 15–81 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Giacomelli, L., Gnann, M.V., Otto, F.: Rigorous asymptotics of traveling-wave solutions to the thin-film equation and Tanner’s law. Nonlinearity 29, 2497–2536 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Giacomelli, L., Knüpfer, H., Otto, F.: Smooth zero-contact-angle solutions to a thin-film equation around the steady state. J. Differ. Equ. 245, 1454–1506 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. Giacomelli, L., Otto, F.: Droplet spreading: intermediate scaling law by PDE methods. Commun. Pure Appl. Math. 55, 217–254 (2002)

    Article  MathSciNet  Google Scholar 

  16. Gnann, M.V.: Well-posedness and self-similar asymptotics for a thin-film equation. SIAM J. Math. Anal. 47, 2868–2902 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gnann, M.V., Ibrahim, S., Masmoudi, N.: Stability of receding traveling waves for a fourth order degenerate parabolic free boundary problem. Adv. Math. 347, 1173–1243 (2019)

    Article  MathSciNet  Google Scholar 

  18. Gnann, M.V., Petrache, M.: The Navier-slip thin-film equation for 3D fluid films: existence and uniqueness. J. Differ. Equ. 265, 5832–5958 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Knüpfer, H.: Well-posedness for the Navier slip thin-film equation in the case of partial wetting. Commun. Pure Appl. Math. 64, 1263–1296 (2011)

    Article  MathSciNet  Google Scholar 

  20. Knüpfer, H., Masmoudi, N.: Well-posedness and uniform bounds for a nonlocal third order evolution operator on an infinite wedge. Commun. Math. Phys. 320, 395–424 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Knüpfer, H., Masmoudi, N.: Darcy’s flow with prescribed contact angle: well-posedness and lubrication approximation. Arch. Ration. Mech. Anal. 218, 589–646 (2015)

    Article  MathSciNet  Google Scholar 

  22. Laugesen, R.S.: New dissipated energies for the thin film equation. Commun. Pure Appl. Anal. 4, 613–634 (2005)

    Article  MathSciNet  Google Scholar 

  23. Majdoub, M., Masmoudi, N., Tayachi, S.: Uniqueness for the thin-film equation with a Dirac mass as initial data. Proc. Am. Math. Soc. 146, 2623–2635 (2018)

    Article  MathSciNet  Google Scholar 

  24. Mellet, A.: The thin film equation with non-zero contact angle: a singular perturbation approach. Commun. Partial Differ. Equ. 40, 1–39 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  25. Myers, T.G.: Thin films with high surface tension. SIAM Rev. 40, 441–462 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  26. Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  27. Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Sup. Pisa 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  28. Oron, A., Davis, S., Bankoff, S.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)

    Article  ADS  Google Scholar 

  29. Otto, F.: Lubrication approximation with prescribed nonzero contact angle. Commun. Partial Differ. Equ. 23, 2077–2164 (1998)

    Article  MathSciNet  Google Scholar 

  30. Otto, F., Westdickenberg, M.G.: Relaxation to equilibrium in the one-dimensional Cahn–Hilliard equation. SIAM J. Math. Anal. 46, 720–756 (2014)

    Article  MathSciNet  Google Scholar 

  31. Seis, C.: The thin-film equation close to self-similarity. Anal. PDE 11, 1303–1342 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for the careful reading of the manuscript and helpful comments. The work of N. M is supported by NSF Grant DMS-1716466 and by Tamkeen under the NYU Abu Dhabi Research Institute grant of the center SITE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Majdoub.

Additional information

Communicated by C. Mouhot

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majdoub, M., Masmoudi, N. & Tayachi, S. Relaxation to Equilibrium in the One-Dimensional Thin-Film Equation with Partial Wetting and Linear Mobility. Commun. Math. Phys. 385, 837–857 (2021). https://doi.org/10.1007/s00220-021-04111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04111-0

Navigation