Skip to main content
Log in

Dissociation of the rostral and dorsolateral prefrontal cortex during sequence learning in saccades: a TMS investigation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

This experiment sought to find whether differences exist between the dorsolateral prefrontal cortex (DLPFC) and the medial rostral prefrontal cortex (MRPFC) for performing stimulus-independent and stimulus-oriented tasks, respectively. To find a causal relationship in these areas, we employed the use of trans-cranial magnetic stimulation (TMS). Prefrontal areas were stimulated whilst participants performed random or predictable sequence learning tasks at stimulus onset (1st presentation of the sequence only for both Random and Predictable), or during the inter-sequence interval. Overall, we found that during the predictable task a significant decrease in saccade latency, gain and duration was found when compared to the randomised conditions, as expected and observed previously. However, TMS stimulation in DLPFC during the delay in the predictive sequence learning task reduced this predictive ability by delaying the saccadic onset and generating abnormal reductions in saccadic gains during prediction. In contrast, we found that stimulation during a delay in MRPFC reversed the normal effects on peak velocity of the task with the predictive task revealing higher peak velocity than the randomised task. These findings provide causal evidence for independent functions of DLPFC and MRPFC in performing stimulus-independent processing during sequence learning in saccades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez TL, Alkan Y, Gohel S, Douglas Ward B, Biswal BB (2010) Functional anatomy of predictive vergence and saccade eye movements in humans: a functional MRI investigation. Vision Res 50(21):2163–2175. doi:10.1016/j.visres.2010.08.018

    Article  PubMed  Google Scholar 

  • Bahill AT, Clark MR, Stark L (1975) The main sequence a tool for studying human eye movements. Math Biosci 24(3–4):191–204

    Article  Google Scholar 

  • Basso D, Ferrari M, Palladino P (2010) Prospective memory and working memory: asymmetrical effects during frontal lobe TMS stimulation. Neuropsychologia 48:3282–3290

    Article  PubMed  Google Scholar 

  • Becker W, Fuchs AF (1969) Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. Vis Res 9:1247–1258

    Article  PubMed  CAS  Google Scholar 

  • Boorman ED, Behrens TE, Woolrich MW, Rushworth MF (2009) How green is the grass on the other side? Frontopolar cortex and the evidence in favour of alternative courses of action. Neuron 62:733–743

    Article  PubMed  CAS  Google Scholar 

  • Bosch SE, Neggers SF, Van der Stigchel S (2013) The role of the frontal eye fields in oculomotor competition: image-guided TMS enhances contralateral target selection. Cereb Cortex 23(4):824–832. doi:10.1093/cercor/bhs075

    Article  PubMed  CAS  Google Scholar 

  • Burgess PW, Scott SK, Frith CD (2003) The role of the rostral frontal cortex area (area 10) in prospective memory: a lateral versus medial dissociation. Neuropsychologia 41:906–918

    Article  PubMed  Google Scholar 

  • Burgess PW, Dumontheil I, Gilbert SJ (2007) The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Neurosci 11(7):290–298

    Article  Google Scholar 

  • Burke MR, Barnes GR (2008) Brain and behaviour: a task dependent eye movement study. Cereb Cortex 18(1):126–135

    Article  PubMed  CAS  Google Scholar 

  • Burke MR, Bramley P, Gonzalez CC, McKeefry D (2013) The contribution of the human right supra-marginal gyrus to sequence learning in saccadic eye movements. Neuropsychologia 51(14):3048–3056

    Article  PubMed  CAS  Google Scholar 

  • Coubard O, Kapoula Z (2005) Dorsolateral prefrontal cortex prevents short-latency saccade and vergence: a TMS study. Cereb Cortex 16(3):425–436

    Article  PubMed  Google Scholar 

  • Coubard O, Kapoula Z, Müri R, Rivaud-Péchoux S (2003) Effects of TMS over the right prefrontal cortex on latency of saccades and convergence. IOVS 44(2):600–609

    Google Scholar 

  • Gilbert SJ, Spengler S, Simons JS, Steele JD, Lawrie SM, Frith CD, Burgess PW (2006) Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. J Cogn Neurosci 18:932–948

    Article  PubMed  Google Scholar 

  • Hassabis D, Kumaran D, Maguire EA (2007) Using imagination to understand the neural basis of episodic memory. J Neurosci 27:14365–14374

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Henson DB (1979) Investigation into corrective saccadic eye movements for refixation amplitudes of 10 degrees and below. Vis Res 19:57–61

    Article  PubMed  CAS  Google Scholar 

  • Herwig U, Satrapi P, Schonfeldt-Lecuona C (2003) Using the international 10-20 EEG system for positioning of trans-cranial magnetic stimulation. Brain Topogr 16:95–99

    Article  PubMed  Google Scholar 

  • Koechlin E, Summerfield C (2007) An information theoretical approach to prefrontal executive function. Trends Cogn Neurosci 11(6):229–235

    Article  Google Scholar 

  • Koval MJ, Lomber SG, Everling S (2011) Prefrontal cortex deactivation in macaques alters activity in the superior colliculus and impairs voluntary control of saccades. J Neurosci 31(23):8659–8668

    Article  PubMed  CAS  Google Scholar 

  • Martin K, van Donkelaar P (2012) Expectations can modulate the frequency and timing of multiple saccades: a TMS study. Exp Brain Res 221:3146

    Article  Google Scholar 

  • Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CM (2007) Wandering minds: the default network and stimulus independent thought. Science 315:393–395

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McKeefry DJ, Burton MP, Vakrou C, Barrett BT, Morland A (2008) Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A. J Neurosci 28:6848–6857

    Article  PubMed  CAS  Google Scholar 

  • Müri RM, Rivaud S, Vermersch AI, Leger JM, Pierrot-Diesilligny C (1996) Effects of transcranial magnetic stimulation over the region of the supplementary motor area during sequences of memory guided-saccades. Exp Brain Res 104:163–166

    Google Scholar 

  • Müri RM, Gaymard B, Rivaud S, Vermersch A, Hess CW, Pierrot-Deseilligny C (2000) Hemispheric asymmetry in cortical control of memory-guided saccades. A transcranial magnetic stimulation study. Neuropsychologia 38(8):1105–1111

    PubMed  Google Scholar 

  • Nagel M, Sprenger A, Lencer R, Kömpf D, Siebner H, Heide W (2008) Distributed representations of the “preparatory set” in the frontal oculomotor system: a TMS study. BMC Neurosci 9:89

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25(1):46–59

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Wassermann EM, Grafman J, Hallet M (1996) The role of the dorsolateral prefrontal cortex in implicit procedural learning. Exp Brain Res 107:479–485

    Article  PubMed  CAS  Google Scholar 

  • Pierrot-Diesilligny C, Rivaud S, Gaymard B, Agid Y (1991) Cortical control of reflexive visually guided saccades. Brain 114:1473–1485

    Article  Google Scholar 

  • Pierrot-Diesilligny C, Müri RM, Ploner CJ (2003) Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour. Brain 126:1460–1473

    Article  Google Scholar 

  • Pierrot-Diesilligny C, Milea D, Müri RM (2004) Eye movement control by the cerebral cortex. Curr Opin Neurol 17:17–25

    Article  Google Scholar 

  • Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090

    Article  PubMed  Google Scholar 

  • Schluter ND, Rushworth MF, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain 121:785–799

    Article  PubMed  Google Scholar 

  • Stewart LM, Walsh V, Rothwell JC (2001) Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study. Neuropsychologia 39(4):415–419

    Article  PubMed  CAS  Google Scholar 

  • Wager TD, Smith EE (2003) Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 3(4):255–274

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Burke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burke, M.R., Coats, R.O. Dissociation of the rostral and dorsolateral prefrontal cortex during sequence learning in saccades: a TMS investigation. Exp Brain Res 234, 597–604 (2016). https://doi.org/10.1007/s00221-015-4495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4495-2

Keywords

Navigation