Skip to main content

Advertisement

Log in

Intermittent tACS during a visual task impacts neural oscillations and LZW complexity

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Little is known about how transcranial alternating current stimulation (tACS) interacts with brain activity. Here, we investigate the effects of tACS using an intermittent tACS-EEG protocol and use, in addition to classical metrics, Lempel–Ziv–Welch complexity (LZW) to characterize the interactions between task, endogenous and exogenous oscillations. In a cross-over study, EEG was recorded from thirty participants engaged in a change-of-speed detection task while receiving multichannel tACS over the visual cortex at 10 Hz, 70 Hz and a control condition. In each session, tACS was applied intermittently during 5 s events interleaved with EEG recordings over multiple trials. We found that, with respect to control, stimulation at 10 Hz (\(\hbox {tACS}_{10}\)) enhanced both \(\alpha\) and \(\gamma\) power, \(\gamma\)-LZW complexity and \(\gamma\) but not \(\alpha\) phase locking value with respect to tACS onset (\(\alpha\)-PLV, \(\gamma\)-PLV), and increased reaction time (RT). \(\hbox {tACS}_{70}\) increased RT with little impact on other metrics. As trials associated with larger \(\gamma\)-power (and lower \(\gamma\)-LZW) predicted shorter RT, we argue that \(\hbox {tACS}_{10}\) produces a disruption of functionally relevant fast oscillations through an increase in \(\alpha\)-band power, slowing behavioural responses and increasing the complexity of gamma oscillations. Our study highlights the complex interaction between tACS and endogenous brain dynamics, and suggests the use of algorithmic complexity inspired metrics to characterize cortical dynamics in a behaviorally relevant timescale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LZW:

Lempel–Ziv–Welch Complexity

VSO:

Visual Stimulus Onset

CSO:

Change of speed onset

PC:

Percentage of correct responses

RT:

reaction time

References

  • Abásolo D, Simons S, Morgado da Silva R, Tononi G, Vyazovskiy VV (2015) Lempel-Ziv complexity of cortical activity during sleep and waking in rats. J Neurophysiol 113(7):2742

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrillon T, Poulsen AT, Hansen LK, Léger D, Kouider S (2016) Neural markers of responsiveness to the environment in human sleep. J Neurosci 36(24):6583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barban F, Buccelli S, Mantini D, Chiappalone M, Semprini M Removal of tACS artefact: a simulation study for algorithm comparison, In: 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) (IEEE, 2019), pp. 393–396

  • Bland N, Sale M (2019) Current challenges: the ups and downs of tACS. Exp Brain Res 237:3071

    Article  PubMed  Google Scholar 

  • Braun V, Sokoliuk R, Hanslmayr S (2017) On the effectiveness of event-related beta tACS on episodic memory formation and motor cortex excitability. Brain Stimul 10(5):910

    Article  PubMed  Google Scholar 

  • Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F (2011) A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol 14(8):1133

    Article  PubMed  Google Scholar 

  • Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carhart-Harris R, Friston KJ (2019) REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharmacol Rev 71(3):316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S, Casali KR, Casarotto S, Bruno MA, Laureys S, Tononi G et al (2013) A theoretically based index of consciousness independent of sensory processing and behavior. Sci Transl Med 5(198):198ra105

    Article  PubMed  Google Scholar 

  • Castellano M, Plöchl M, Vicente R, Pipa G (2014) Neuronal oscillations form parietal/frontal networks during contour integration. Front Integr Neurosci 8:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Cecere R, Rees G, Romei V (2015) Individual differences in alpha frequency drive crossmodal illusory perception. Curr Biol 25(2):231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dagan M, Herman T, Harrison R, Zhou J, Giladi N, Ruffini G, Manor B, Hausdorff JM (2018) Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease. Movement disorders : official journal of the Movement Disorder Society 33(4):642. https://doi.org/10.1002/mds.27300. https://pubmed.ncbi.nlm.nih.gov/29436740

  • D’Andola M, Rebollo B, Casali AG, Weinert JF, Pigorini A, Villa R, Massimini M, Sanchez-Vives MV (2018) Bistability, causality, and complexity in cortical networks: an in vitro perturbational study. Cereb Cortex 28(7):2233

  • Feurra M, Pasqualetti P, Bianco G, Santarnecchi E, Rossi A, Rossi S (2013) State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters. J Neurosci 33(44):17483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonteneau C, Mondino M, Arns M, Baeken C, Bikson M, Brunoni AR, Burke MJ, Neuvonen T, Padberg F, Pascual-Leone A, Poulet E, Ruffini G, Santarnecchi E, Sauvaget A, Schellhorn K, Suaud-Chagny MF, Palm U, Brunelin J (2019) Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials, Brain Stimul 12(3):668

    PubMed  Google Scholar 

  • Fries P (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32:209

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67:129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fröhlich F, Sellers KK, Cordle AL (2015) Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation. Expert Rev Neurother 15(2):145

    Article  PubMed  CAS  Google Scholar 

  • Gao RD, Peterson EJ, Voytek B (2016) Field potential reflects the balance of synaptic excitation and inhibition, bioRxiv p. 081125

  • Gruber T, Müller MM, Keil A (2002) Modulation of induced gamma band responses in a perceptual learning task in the human EEG. J Cogn Neurosci 14(5):732

    Article  PubMed  Google Scholar 

  • Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS (2014) Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol 24(3):333

    Article  CAS  PubMed  Google Scholar 

  • Herrmann CS, Murray MM, Ionta S, Hutt A, Lefebvre J (2016) Shaping intrinsic neural oscillations with periodic stimulation. J Neurosci 36(19):5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoogenboom N, Schoffelen JM, Oostenveld R, Parkes LM, Fries P (2006) Localizing human visual gamma-band activity in frequency, time and space. Neuroimage 29(3):764

    Article  PubMed  Google Scholar 

  • Hoogenboom N, Schoffelen JM, Oostenveld R, Fries P (2010) Visually induced gamma-band activity predicts speed of change detection in humans. Neuroimage 51(3):1162

    Article  PubMed  Google Scholar 

  • Krause MR, Vieira PG, Csorba BA, Pilly PK, Pack CC (2019) Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. PNAS

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laczó B, Antal A, Niebergall R, Treue S, Paulus W (2012) Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul 5(4):484

    Article  PubMed  Google Scholar 

  • Lempel A, Ziv J (1976) On the complexity of finite sequences. IEEE Trans Inf Theory 22(1):75

    Article  Google Scholar 

  • Li Y, Tong S, Liu D, Gai Y, Wang X, Wang J, Qiu Y, Zhu Y (2008) Abnormal EEG complexity in patients with schizophrenia and depression. Clin Neurophysiol 119(6):1232

    Article  PubMed  Google Scholar 

  • Luke Johnson L, Alekseichuk I, Krieg J, Doyle A, Yu Y, Vitek J, Johnson M, Opitz A (2019) Dose-dependent effects of transcranial alternating current stimulation on spike timing in Awake Nonhuman Primates, bioRxiv

  • Márquez-Ruiz J, Ammann C, Leal-Campanario R, Ruffini G, Gruart A, Delgado-García JM (2016) Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits. Sci Rep 6:19753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marshall L, Kirov R, Brade J, Mölle M, Born J (2011) Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS One 6(2):e16905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Méndez MA, Zuluaga P, Hornero R, Gómez C, Escudero J, Rodríguez-Palancas A, Ortiz T, Fernández A (2012) Complexity analysis of spontaneous brain activity: effects of depression and antidepressant treatment. J Psychopharmacol 26(5):636

    Article  PubMed  CAS  Google Scholar 

  • Miranda PC, Callejón-Leblic MA, Salvador Ricardo, Ruffini G (2018) Curr Opin Biomed Eng

  • Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117(7):1623

    Article  PubMed  Google Scholar 

  • Miranda PC, Mekonnen A, Salvador R, Ruffini G (2013) The electric field in the cortex during transcranial current stimulation. Neuroimage 70:48

    Article  PubMed  Google Scholar 

  • Molaee-Ardekani B, Márquez-Ruiz J, Merlet I, Leal-Campanario R, Gruart A, Sánchez-Campusano R, Birot G, Ruffini G, Delgado-García JM, Wendling F (2013) Effects of transcranial Direct Current Stimulation (tDCS) on cortical activity: a computational modeling study. Brain Stimul 6(1):25

    Article  PubMed  Google Scholar 

  • Muthukumaraswamy S (2013) High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci 7:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Neri F, Mencarelli L, Menardi A, Giovannelli F, Rossi S, Sprugnoli G, Rossi A, Pascual-Leone A, Salvador R, Ruffini G, Santarnecchi E (2020) A novel tDCS sham approach based on model-driven controlled shunting. Brain Stimulation 13(2):507. https://doi.org/10.1016/j.brs.2019.11.004. http://www.sciencedirect.com/science/article/pii/S1935861X1930436X

  • Neuling T, Rach S, Herrmann CS (2013) Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci 7:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Niethard N, Burgalossi A, Born J (2017) Plasticity during sleep is linked to specific regulation of cortical circuit activity. Front Neural Circuits 11:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1

    Article  Google Scholar 

  • Polanía R, Paulus W (2012) Noninvasively decoding the contents of visual working memory in the human prefrontal cortex within high-gamma oscillatory patterns, Nitsche. J Cognit Neurosci 24(2):304

    Article  Google Scholar 

  • Ruffini G (2017) An algorithmic information theory of consciousness. Neurosci Consci 3(1)

  • Ruffini G (2017) Lempel-Zip Complexity Reference, arXiv preprint arXiv:1707.09848

  • Ruffini G, Wendling F, Merlet I, Molaee-Ardekani B, Mekonnen A, Salvador R, Soria-Frisch A, Grau C, Dunne S, Miranda PC (2012) Transcranial current brain stimulation (tCS): models and technologies. IEEE Trans Neural Syst Rehabil Eng 21(3):333

    Article  Google Scholar 

  • Ruffini G, Fox MD, Ripolles O, Miranda PC, Pascual-Leone A (2014) Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. Neuroimage 89:216

    Article  PubMed  Google Scholar 

  • Ruffini G, Ibañez D, Kroupi E, Gagnon JF, Montplaisir J, Ronald R, Postuma B, Castellano M, Soria-Frisch A (2019) Algorithmic complexity of EEG for prognosis of neurodegeneration in idiopathic rapid eye movement behavior disorder (RBD). Ann Biomed Eng 47:282

    Article  PubMed  Google Scholar 

  • Ruffini G, Salvador R, Tadayon E, Sanchez-Todo R, Pascual-Leone A, Santarnecchi E (2019) Realistic modeling of ephaptic fields in the human brain, bioRxiv. https://doi.org/10.1101/688101. https://www.biorxiv.org/content/early/2019/07/02/688101

  • Ruhnau P, Neuling T, Fuscá M, Herrmann CS, Demarchi G, Weisz N (2016) Eyes wide shut: transcranial alternating current stimulation drives alpha rhythm in a state dependent manner. Sci Rep 6:27138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhnau P, Keitel C, Lithari C, Weisz N, Neuling T (2016) Flicker-driven responses in visual cortex change during matched-frequency transcranial alternating current stimulation. Front Hum Neurosci 10:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Sejnowski TJ, Paulsen O (2006) Network oscillations: emerging computational principles. J Neurosci 26(6):1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thut G, Schyns P, Gross J (2011) Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol 2:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Uhlhaas P, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolić D, Singer W (2009) Neural synchrony in cortical networks: history, concept and current status. Front Integr Neurosci 3:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Voss U, Holzmann R, Hobson A, Paulus W, Koppehele-Gossel J, Klimke A, Nitsche MA (2014) Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat Neurosci 17(6):810

    Article  CAS  PubMed  Google Scholar 

  • Vossen A, Gross J, Thut G (2015) Alpha power increase after transcranial alternating current stimulation at alpha frequency (\(\alpha\)-tACS) reflects plastic changes rather than entrainment. Brain Stimul 8(3):499

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaehle T, Rach S, Herrmann CS (2010) Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One 5(11):e13766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zarafshan H, Khaleghi A, Mohammadi M, Moeini M, Malmir N (2016) Electroencephalogram complexity analysis in children with attention-deficit/hyperactivity disorder during a visual cognitive task. J Clin Exp Neuropsychol 38(3):361

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Ruffini.

Ethics declarations

Conflict of interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: GR is a co-founder, shareholder and employee of Neuroelectrics, the company that provides Starstim and Stimweaver. JA is employee of Neuroelectrics. MC, EK, DI, and ASF, are Starlab employees, the company that gave birth to Neuroelectrics in 2011. GR is a co-founder and shareholder of Starlab. All other authors declare no potential conflicts of interest with respect to the research, authorship, or publication of this article

Additional information

Communicated by John C. Rothwell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 82 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellano, M., Ibañez-Soria, D., Kroupi, E. et al. Intermittent tACS during a visual task impacts neural oscillations and LZW complexity. Exp Brain Res 238, 1411–1422 (2020). https://doi.org/10.1007/s00221-020-05820-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-020-05820-z

Keywords

Navigation