Skip to main content

Advertisement

Log in

Sea-ice and density-dependent factors affecting foraging habitat and behaviour of Adélie penguins throughout the breeding season

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Seabird foraging activities are constrained by the heterogeneous distribution of prey, intra-specific competition, and the varying energy requirements throughout their life history. Investigations of intra-seasonal variation in foraging habitat will, therefore, provide clues to understand how predators respond to changes in the marine environment. As an abundant, central-place foraging mesopredator, we selected to examine this with Adélie penguins (Pygoscelis adeliae) breeding in the Prydz Bay region where the sea-ice environment is heterogeneous and the largest populations in East Antarctica occur. In the summer of 2011/12, using GPS tracks, we calculated First Passage Time to extract Area Restricted Search (ARS) zones to indicate foraging intensity, and classified the ARS zones by K-means clustering. In total, 47, 64, 23 and 10 ARS zones were detected during early and late incubation, chick-guard and crèche stages (n = 4, 11, 6 and 3 birds). Higher and more stable sea-ice concentration and increased distance from the nearest major colony had positive effects on foraging intensity. The ARS zones were classified into nearshore, offshore and open water habitats. Birds used offshore areas and avoided open water during early incubation and crèche, when birds returned less frequently. During late incubation and chick-guard, when birds frequently returned, they used nearshore and open water areas as expected from the proportion of available habitats. Our results suggest that the pack ice and reduced intra-specific competition for prey were the preferred foraging condition for Adélie penguins, and highlight the importance of seasonal changes in sea-ice environment to their foraging habitat selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study have been deposited in the Australian Antarctic Data Centre (https://data.aad.gov.au/) with the identifier “doi:https://doi.org/10.4225/15/58eee5502b047” and are available on reasonable request.

Code availability

The programme code used for the analyses are available from the corresponding author on reasonable request.

References

  • Ainley DG (ed) (2002) The Adélie penguin: bellwether of climate change. Columbia University Press, New York, pp 1–310

    Book  Google Scholar 

  • Ainley DG, O’Connor EF, Boekelheide RJ (1984) The marine ecology of birds in the Ross Sea, Antarctica. Ornithol Monogr 32:iii–97

    Google Scholar 

  • Ainley DG, Wilson PR, Barton KJ, Ballard G, Nur N, Karl B (1998) Diet and foraging effort of Adélie penguins in relation to pack-ice conditions in the southern Ross Sea. Polar Biol 20:311–319

    Article  Google Scholar 

  • Ainley DG, Tynan CT, Stirling I (2003) Sea Ice: a critical habitat for polar marine mammals and birds. In: Thomas DN, Dieckmann GS (eds) Sea Ice—an introduction to its physics, chemistry, biology and geology. Blackwell, Malden, pp 240–266

    Google Scholar 

  • Ainley DG, Ribic CA, Ballard G, Heath S, Gaffney I, Karl BJ, Barton KJ, Wilson PR, Webb S (2004) Geographic structure of Adélie penguin populations: overlap in colony-specific foraging areas. Ecol Monogr 74:159–178

    Article  Google Scholar 

  • Ainley DG, Ballard G, Dugger KM (2006) Competition among penguins and cetaceans reveals trophic cascades in the western Ross Sea, Antarctica. Ecology 87:2080–2093

    Article  PubMed  Google Scholar 

  • Amakasu K, Ono A, Hirano D, Moteki M, Ishimaru T (2011) Distribution and density of Antarctic krill (Euphausia superba) and ice krill (E. crystallorophias) off Adélie Land in austral summer 2008 estimated by acoustical methods. Polar Sci 5:187–194

    Article  Google Scholar 

  • Bailleul F, Pinaud D, Hindell M, Charrassin J-B, Guinet C (2008) Assessment of scale-dependent foraging behaviour in southern elephant seals incorporating the vertical dimension: a development of the First Passage Time method. J Anim Ecol 77:948–957

    Article  PubMed  Google Scholar 

  • Ballance LT, Ainley DG, Ballard G, Barton K (2009) An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. J Avian Biol 40:279–288

    Article  Google Scholar 

  • Ballard G, Dugger KM, Nur N, Ainley DG (2010a) Foraging strategies of Adélie penguins: adjusting body condition to cope with environmental variability. Mar Ecol Prog Ser 405:287–302

    Article  Google Scholar 

  • Ballard G, Toniolo V, Ainley DG, Parkinson CL, Arrigo KR, Trathan PN (2010b) Responding to climate change: Adélie penguins confront astronomical and ocean boundaries. Ecology 91:2056–2069

    Article  PubMed  Google Scholar 

  • Ballard G, Schmidt AE, Toniolo V, Veloz S, Jongsomjit D, Arrigo KR, Ainley DG (2019) Fine-scale oceanographic features characterizing successful Adélie penguin foraging in the SW Ross Sea. Mar Ecol Prog Ser 608:263–277

    Article  Google Scholar 

  • Bannasch R, Wilson RP, Culik B (1994) Hydrodynamic aspects of design and attachment of a back-mounted device in penguins. J Exp Biol 194:83–96

    Article  Google Scholar 

  • Barbraud C, Rolland V, Jenouvrier S, Nevoux M, Delord K, Weimerskirch H (2012) Effects of climate change and fisheries bycatch on Southern Ocean seabirds: a review. Mar Ecol Prog Ser 454:285–307

    Article  Google Scholar 

  • Barlow KE, Croxall JP (2002) Seasonal and interannual variation in foraging range and habitat of macaroni penguins Eudyptes chrysolophus at South Georgia. Mar Ecol Prog Ser 232:291–304

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Beaulieu M, Dervaux A, Thierry AM, Lazin D, Le Maho Y, Ropert-Coudert Y, Spée M, Raclot T, Ancel A (2010) When sea-ice clock is ahead of Adélie penguins’ clock. Funct Ecol 24:93–102

    Article  Google Scholar 

  • Bolton M, Conolly G, Carroll M, Wakefield ED, Caldow R (2019) A review of the occurrence of inter-colony segregation of seabird foraging areas and the implications for marine environmental impact assessment. Ibis 161:241–259

    Article  Google Scholar 

  • Bost CA, Charrassin JB, Clerquin Y, Ropert-Coudert Y, LeMaho Y (2004) Exploitation of distant marginal ice zones by king penguins during winter. Mar Ecol Prog Ser 283:293–297

    Article  Google Scholar 

  • Bost C-A, Cotté C, Terray P, Barbraud C, Bon C, Delord K, Gimenez O, Handrich Y, Naito Y, Guinet C, Weimerskirch H (2015) Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat Commun 6:8220

    Article  CAS  PubMed  Google Scholar 

  • Bracegirdle TJ, Connolley WM, Turner J (2008) Antarctic climate change over the twenty first century. J Geophys Res 113:D03103

    Google Scholar 

  • Brierley AS, Fernandes PG, Brandon MA, Armstrong F, Millard NW, McPhail SD, Stevenson P, Pebody M, Perrett J, Squires M, Bone DG, Griffiths G (2002) Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge. Science 295:1890–1892

    Article  CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Calenge C (2011) Home range estimation in R: the adehabitat. HR Package. Office national de la classe et de la faune sauvage: Saint Benoist, Auffargis

  • Charrassin J-B, Le Maho Y, Bost C-A (2002) Seasonal changes in the diving parameters of king penguins (Aptenodytes patagonicus). Mar Biol 141:581–589

    Article  Google Scholar 

  • Clarke J, Manly B, Kerry K, Gardner H, Franchi E, Corsolini S, Focadi S (1998) Sex differences in Adélie penguin foraging strategies. Polar Biol 20:248–258

    Article  Google Scholar 

  • Clarke J, Kerry K, Fowler C, Lawless R, Eberhand S, Murphy R (2003) Post-fledging and winter migration of Adélie penguins Pygoscelis adeliae in the Mawson region of East Antarctica. Mar Ecol Prog Ser 248:267–278

    Article  Google Scholar 

  • Clarke J, Emmerson L, Otahal P (2006) Environmental constraints determine foraging range in breeding Adélie penguins. Mar Ecol Prog Ser 310:247–261

    Article  Google Scholar 

  • Cottin M, Raymond B, Kato A, Amélneau F, Le Maho Y, Raclot T, Galton-Fenzi B, Meijers A, Ropert-Coudert Y (2012) Foraging strategies of male Adélie penguins during their first incubation trip in relation to environmental conditions. Mar Biol 159:1843–1852

    Article  Google Scholar 

  • Croxall JP, Trathan PN, Murphy EJ (2002) Environmental change and Antarctic seabird populations. Science 297:1510–1514

    Article  CAS  PubMed  Google Scholar 

  • Davis LS, Miller GD (1992) Satellite tracking of Adélie penguins. Polar Biol 12:503–506

    Article  Google Scholar 

  • Deagle BE, Gales NJ, Evans K, Jarman SN, Robinson S, Trebilco R, Hindel MA (2007) Studying seabird diet through genetic analysis of faeces: a case study on macaroni penguins (Eudyptes chrysolophus). PLoS ONE 9:e831

    Article  Google Scholar 

  • Dehnhard N, Achurch H, Clarke J, Michel LN, Southwell C, Summer MD, Eens M, Emmerson L (2020) High inter- and intraspecific niche overlap among three sympatrically breeding, closely related seabird species: generalist foraging as an adaptation to a highly variable environment? J Anim Ecol 89:104–119

    Article  PubMed  Google Scholar 

  • Doyle TK, Houghton JDR, McDevitt R, Davenport J, Hays CC (2007) The energy density of jellyfish: estimates from bomb-calorimetry and proximate-composition. J Exp Mar Biol Ecol 343:239–252

    Article  Google Scholar 

  • Dunn MJ, Silk JRD, Trathan PN (2011) Post-breeding dispersal of Adélie penguins (Pygoscelis adeliae) nesting at Signy Island, South Orkney Islands. Polar Biol 34:205–214

    Article  Google Scholar 

  • Emmerson L, Southwell C (2008) Sea ice cover and its influence on Adélie penguin reproductive performance. Ecology 89:2096–2102

    Article  PubMed  Google Scholar 

  • Emmerson L, Pike R, Southwell C (2011) Reproductive consequences of environment-driven variation in Adélie penguin breeding phenology. Mar Ecol Prog Ser 440:203–216

    Article  Google Scholar 

  • Emmerson L, Southwell C, Clarke J, Tierney M, Kerry K (2015) Adélie penguin response parameters signal reduced prey accessibility: implications for predator-prey response curves. Mar Biol 162:1187–1200

    Article  Google Scholar 

  • Emmerson L, Walsh S, Southwell C (2019) Non-breeder birds at colonies display qualitatively similar seasonal mass change patterns as breeders. Ecol Evol 9:4637–4650

    Article  PubMed  PubMed Central  Google Scholar 

  • Faraway JJ (ed) (2006) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman and Hall/CRC, Boca Raton, pp 153–183

    Google Scholar 

  • Fauchald P, Tveraa T (2003) Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84:282–288

    Article  Google Scholar 

  • Fetterer F, Knowls K (2004) Sea ice index monitors polar ice extent. EOS163-163

  • Flores H, Atkinson A, Kawaguchi S, Krafft BA, Milinevsky G, Nicol S, Reiss C, Tarling GA, Werner R, Rebolledo EB, Cirelli V, Cuzin-Roudy J, Fielding S, Groeneveld JJ, Haraldsson M, Lombana A, Marschoff E, Meyer B, Pakhomov EA, Rombolá E, Schmidt K, Siegel V, Teschke M, Tonkes H, Toullec JY, Trathan PN, Tremblay N, Van de Putte AP, van Franeker JA, Werner T (2012) Impact of climate change on Antarctic krill. Mar Ecol Prog Ser 458:1–19

    Article  Google Scholar 

  • Fraser WR, Hoffman EE (2003) A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar Ecol Prog Ser 265:1–15

    Article  Google Scholar 

  • Fraser AD, Massom RA, Michael K (2010) Generation of high-resolution East Antarctic landfast sea-ice maps from cloud-free MODIS satellite composite imagery. Remote Sens Environ 114:2888–2896

    Article  Google Scholar 

  • Hinke JT, Trivelpiece SG, Trivelpiece WZ (2014) Adélie penguin (Pygoscelis adeliae) survival rates and their relationship to environmental indices in the South Shetland Islands, Antarctica. Polar Biol 37:1797–1809

    Article  Google Scholar 

  • Hosie G (1994) The macrozooplankton communities in Prydz Bay region, Antarctica. In: El-Sayed SZ (ed) Southern Ocean ecology: the BIOMASS perspective. Cambridge University Press, Cambridge, pp 93–123

    Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometr J 50:346–363

    Article  Google Scholar 

  • Hull C, Hindell MA, Michael K (1997) Foraging zones of royal penguins during the breeding season, and their association with oceanographic features. Mar Ecol Prog Ser 153:217–228

    Article  Google Scholar 

  • Ichii T, Bengtson JL, Boveng PL, Takao Y, Jansen JK, Hiruki-Raring LM, Cameron MF, Okamura H, Hayashi T, Naganobu M (2007) Provisioning strategies of Antarctic fur seals and chinstrap penguins produce different responses to distribution of common prey and habitat. Mar Ecol Prog Ser 344:277–297

    Article  Google Scholar 

  • Ito M, Takahashi A, Kokubun N, Kitaysky AS, Watanuki Y (2010) Foraging behavior of incubating and chick-rearing thick-billed murres Uria lomvia. Aquat Biol 8:279–287

    Article  Google Scholar 

  • Ito K, Watanabe YY, Kokubun N, Takahashi A (2020) Inter-colony foraging area segregation quantified in small colonies of Adélie penguins. Ibis 163:90–98

    Article  Google Scholar 

  • Jarman SN, McInnes JC, Faux C, Polanowski AM, Marthick J, Deagle ED, Southwell C, Emmerson L (2013) Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE 8:e82227

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato A, Yoshioka A, Sato K (2009) Foraging behavior of Adélie penguins during incubation period in Lützow-Holm Bay. Polar Biol 32:181–186

    Article  Google Scholar 

  • Kern S (2009) Wintertime Antarctic coastal polynya area: 1992–2008. Geophys Res Lett 36:L14501

    Article  Google Scholar 

  • Kokubun N, Takahashi A, Mori Y, Watanabe S, Shin H-C (2010) Comparison of diving behavior and foraging habitat use between chinstrap and gentoo penguins breeding in the South Shetland Islands, Antarctica. Mar Biol 157:811–825

    Article  Google Scholar 

  • Kokubun N, Kim J-H, Shin H-C, Naito Y, Takahashi A (2011) Penguin head movement detected using small accelerometers: a proxy of prey encounter rate. J Exp Biol 214:3760–3767

    Article  PubMed  Google Scholar 

  • Kokubun N, Lee W-Y, Kim JH, Takahashi A (2015) Chinstrap penguin foraging area associated with a seamount in Bransfield Strait, Antarctica. Polar Sci 9:393–400

    Article  Google Scholar 

  • Le Guen C, Kato A, Raymond B, Barbraud C, Beaulieu M, Bost C-A, Delord K, MacIntosh AJJ, Meyer X, Raclot T, Sumner M, Takahashi A, Thiebot J-B, Ropert-Coudert Y (2017) Reproductive performance and diving behaviour share a common sea-ice concentration optimum in Adélie penguins (Pygoscelis adeliae). Glob Chang Biol 24:5304–5317

    Article  Google Scholar 

  • Lescroël A, Ballard G, Toniolo V, Barton KJ, Wilson PR, Lyver PO, Ainley DG (2010) Working less to gain more: when breeding quality relates to foraging efficiency. Ecology 91:2044–2055

    Article  PubMed  Google Scholar 

  • Lishman GS (1985) The food and feeding ecology of Adélie penguin (Pygoscelis adeliae) and chinstrap penguins (P. antarctica) at Signy Island, South Orkney Islands. J Zool 205:245–263

    Article  Google Scholar 

  • Loeb V, Siegel V, Holm-Hensen O, Hewitt R, Fraser W, Trivelpiece W, Trivelpiece S (1997) Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature 387:897–900

    Article  CAS  Google Scholar 

  • Lynch HJ, Naveen R, Trathan PN, Fagan WF (2012) Spatially integrated assessment reveals wide-spread changes in penguin populations on the Antarctic Peninsula. Ecology 93:1367–1377

    Article  PubMed  Google Scholar 

  • Lynnes AS, Reid K, Croxall JP, Trathan PN (2002) Conflict or co-existence? Foraging distribution and competition for prey between Adélie and chinstrap penguins. Mar Biol 141:1165–1174

    Article  Google Scholar 

  • Lyver PO, MacLeod CJ, Ballard G, Karl BJ, Barton KJ, Adams J, Ainley DG, Wilson PR (2011) Intra-seasonal variation in foraging behavior among Adélie penguins (Pygoscelis adeliae) breeding at Cape Hallett, Ross Sea, Antarctica. Polar Biol 34:49–67

    Article  Google Scholar 

  • Manly B, McDonald L, Thomas D, McDonald T, Erickson W (2002) Resource selection by animals: statistical design and analysis for field studies. Kluwer, Dordrecht

    Google Scholar 

  • Massom RA, Stammerjohn SE (2010) Antarctic sea ice and variability—physical and ecological implications. Polar Sci 4:149–186

    Article  Google Scholar 

  • Massom R, Reid P, Stammerjohn S, Raymond B, Fraser A, Ushio S (2013) Change and variability in East antarctic sea ice seasonality, 1979/80–2009/10. PLoS ONE 8:e64756

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthiopoulos J (2003) The use of space by animals as a function of accessibility and preference. Ecol Model 159:239–268

    Article  Google Scholar 

  • McInnes J, Emmerson L, Southwell C, Faux C, Jarman SN (2016) Simultaneous DNA-based diet analysis of breeding, non-breeding and chick Adélie penguins. R Soc Open Sci 3:150443

    Article  PubMed  PubMed Central  Google Scholar 

  • Meiers ES, Kienast F, Pearman PB, Svenning J-C, Thuiller W, Araújo MB, Antoine Guisan A, Zimmermann NE (2010) Biotic and abiotic variables show little redundancy in explaining tree species distributions. Ecography 33:1038–1048

    Article  Google Scholar 

  • Michelot C, Kato A, Ralcot T, Shiomi K, Goulet P, Bustamante P, Ropert-Coudert Y (2020) Sea-ice edge is more important than closer open water access for foraging Adélie penguins: evidence from two colonies. Mar Ecol Prog Ser 640:215–230

    Article  CAS  Google Scholar 

  • Miller AK, Karnovsky NJ, Trivelpiece WZ (2009) Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands, Antarctica. Mar Biol 156:2527–2537

    Article  Google Scholar 

  • Murase H, Kitakado T, Hakamada T, Matsuoka K, Nishiwaki S, Naganobu M (2013) Spatial distribution of Antarctic minke whales (Balaenoptera bonaerensis) in relation to spatial distributions of krill in the Ross Sea, Antarctica. Fish Oceanogr 22:154–173

    Article  Google Scholar 

  • Nicol S, Pauly T, Bindoff NL, Wright S, Thiele D, Hosie GW, Strutton PG, Woehler E (2000) Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent. Nature 406:504–507

    Article  CAS  PubMed  Google Scholar 

  • Nicol S, Clarke J, Romaine SJ, Kawaguchi S, Williams G, Hosie GW (2008) Krill (Euphausia superba) abundance and Adélie penguin (Pygoscelis adeliae) breeding performance in the waters off the Béchervaise Island colony, East Antarctica in 2 years with contrasting ecological conditions. Deep Sea Res II 55:540–557

    Article  Google Scholar 

  • O’Brien DP (1987) Direct observations of the behavior of Euphausia superba and Euphausia crystallorophias (Crustacea: Euphausiacea) under pack ice during the Antarctic spring of 1985. J Crustacean Biol 7:437–448

    Article  Google Scholar 

  • Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Stairs BR, Mitchell RD (eds) Analyses of ecological systems. Ohio State University Press, Columbus, pp 155–177

    Google Scholar 

  • Parkinson CL (2002) Trends in the length of the Southern Ocean sea-ice season, 1979–99. Ann Glaciol 34:435–440

    Article  Google Scholar 

  • Phillips RA, Lewis S, González-Solís J, Daunt F (2017) Causes and consequences of individual variability and specialization in foraging and migration strategies of seabirds. Mar Ecol Prog Ser 578:117–150

    Article  Google Scholar 

  • Pinaud D, Weimerskirch H (2007) At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: a comparative study. J Anim Ecol 76:9–19

    Article  PubMed  Google Scholar 

  • Puddicombe RA, Johnstone GW (1988) The breeding season diet of Adélie penguins at the Vestfold Hills, East Antarctica. Hydrobiologia 165:239–253

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

  • Ricklefs RE (1983) Some considerations on the reproductive energetics of pelagic seabirds. Stud Avian Biol 8:84–94

    Google Scholar 

  • Ropert-Coudert Y, Wilson RP, Daunt F, Kato A (2004) Patterns of energy acquisition by a central place forager: benefits of alternating short and long foraging trips. Behav Ecol 15:824–830

    Article  Google Scholar 

  • Ropert-Coudert Y, Kato A, Shiomi K, Barbraud C, Angelier F, Delord K, Poupart T, Koubbi P, Ralcot T (2018) Two recent massive breeding failures in an Adélie penguin colony call for the creation of a marine protected area in D’Urville Sea/Mertz. Front Mar Sci 5:264

    Article  Google Scholar 

  • Smith RC, Ainley DG, Baker K, Domack E, Emslie S, Fraser W, Kennett J, Leventer A, Mosley-Thompson E, Stammerjohn S, Vernet M (1999) Marine ecosystem sensitivity to climate change. Bioscience 49:393–404

    Article  Google Scholar 

  • Southwell C, Paxton CGM, Borchers DL, Boveng PL, Nordøy ES, Blix AS, de la Mare W (2008) Estimating population status under conditions of uncertainty: the Ross seal in East Antarctica. Antarct Sci 20:123–133

    Article  Google Scholar 

  • Southwell C, McKinlay J, Low M, Wilson D, Newbery K, Lieser J, Emmerson L (2013) New methods and technologies for regional-scale abundance estimation of land-breeding marine animals: application to Adélie penguin populations in East Antarctica. Polar Biol 36:843–856

    Article  Google Scholar 

  • Southwell C, Emmerson L, McKinlay J, Newbery K, Takahashi A, Kato A, Barbraud C, DeLord K, Weimerskirch H (2015a) Spatially extensive standardized surveys reveal widespread, multi-decadal increase in East Antarctic Adélie penguin populations. PLoS ONE 10:e0139877

    Article  PubMed  PubMed Central  Google Scholar 

  • Southwell D, Emmerson L, Forcada J, Southwell C (2015b) A bioenergetics model for estimating prey consumption throughout the breeding season for Adélie penguins. Mar Ecol Prog Ser 526:183–197

    Article  Google Scholar 

  • Southwell C, Emmerson L, Takahashi A, Barbraud C, Delord K, Weimerskirch H (2017) Large-scale population assessment informs conservation management for seabirds in Antarctica and the Southern Ocean: a case study of Adélie penguins. Glob Eco Conserv 9:104–115

    Google Scholar 

  • Stephens D, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Suryan RM, Sato F, Balogh GR, Hyrenbach KD, Sievert PR, Ozaki K (2006) Foraging destinations and marine habitat use of short-tailed albatrosses: a multi-scale approach using first-passage time analysis. Deep Sea Res II 53:370–386

    Article  Google Scholar 

  • Sydeman WJ, Thompson SA, Kitaysky A (2012) Seabirds and climate change: roadmap for future. Mar Ecol Prog Ser 454:107–117

    Article  Google Scholar 

  • Sydeman WJ, Poloszanska E, Reed TE, Thompson SA (2015) Climate change and marine vertebrates. Science 350:772–777

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Ito M, Nagai K, Thiebot J-B, Mitamura H, Noda T, Trathan P, Tamura T, Watanabe YY (2018) Migratory movements and winter diving activity of Adélie penguins in East Antarctica. Mar Ecol Prog Ser 589:227–239

    Article  Google Scholar 

  • Thomas PG, Green K (1988) Distribution of Euphausia crystallorophias within Prydz Bay and its importance to the inshore marine ecosystem. Polar Biol 8:327–331

    Article  Google Scholar 

  • Tibshirani R, Walter G, Hastie T (2001) Estimating number of clusters in a data set via the gap statistic. J R Stat Soc B 63:411–423

    Article  Google Scholar 

  • Tierney M, Southwell C, Emmerson LM, Hindell MA (2008) Evaluating and using stable-isotope analysis to infer diet composition and foraging ecology of Adélie penguins Pygoscelis adeliae. Mar Ecol Prog Ser 355:297–307

    Article  Google Scholar 

  • Tierney M, Emmerson L, Hindell M (2009) Temporal variation in Adélie penguin diet at Béchervaise Island, east Antarctica and its relationship to reproductive performance. Mar Biol 156:1633–1645

    Article  Google Scholar 

  • Trathan PN, Bishop C, Maclean G, Brown P, Fleming A, Collins MA (2008) Linear tracks and restricted temperature ranges characterise penguin foraging pathways. Mar Ecol Prog Ser 370:285–294

    Article  Google Scholar 

  • Tremblay Y, Cherel Y (2003) Geographic variation in the foraging behaviour, diet and chick growth of rockhopper penguins. Mar Ecol Prog Ser 251:279–297

    Article  Google Scholar 

  • Trivelpiece WZ, Trivelpiece SG, Volkman NJ (1987) Ecological segregation of Adélie, gentoo, and chinstrap penguins at King George Island, Antarctica. Ecology 68:351–361

    Article  Google Scholar 

  • Trivelpiece WZ, Hinke JT, Miller AK, Reiss CS, Trivelpiece SG, Watters GM (2011) Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. Proc Nat Acad Sci USA 108:7625–7628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe YY, Ito K, Kokubun N, Takahashi A (2020) Foraging behavior links sea ice to breeding success in Antarctic penguins. Sci Adv 6:eaba4828

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanuki Y, Mori Y, Naito Y (1992) Adélie Penguin parental activities and reproduction: effects of device size and timing of its attachment during chick rearing period. Polar Biol 12:539–544

    Article  Google Scholar 

  • Watanuki Y, Kato A, Naito Y, Robertson G, Robinson S (1997) Diving and foraging behaviour of Adélie penguins in areas with and without fast sea-ice. Polar Biol 17:296–304

    Article  Google Scholar 

  • Watanuki Y, Kato A, Sato K, Niizuma Y, Bost CA, Le Maho Y, Naito Y (2002) Parental mass change and food provisioning in Adélie penguins rearing chicks in colonies with contrasting sea-ice conditions. Polar Biol 25:672–681

    Article  Google Scholar 

  • Watanuki Y, Takahashi A, Sato K, Kato A, Bost C-A (2004) Inter-colony and sex differences in the effects of parental body condition and foraging effort on the brood growth of Adélie penguins. J Ethol 22:91–98

    Article  Google Scholar 

  • Whitehead MD, Johnstone GW, Burton HR (1990) Annual fluctuation in productivity and breeding success of Adélie penguins and fulmarine petrels in Prydz Bay, East Antarctica. In: Knowls KR, Hempel G (eds) Antarctic ecosystems: ecological change and conservation. Springer, Berlin, pp 214–223

    Chapter  Google Scholar 

  • Widmann M, Kato A, Raymond B, Angelier F, Arthur B, Chastel O, Pellé M, Ralcot T, Ropert-Coudert Y (2015) Habitat use and sex-specific foraging behaviour of Adélie penguins throughout the breeding season in Adélie Land, East Antarctica. Mov Ecol 3:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Woehler EJ (1997) Seabird abundance, biomass and prey consumption within Prydz Bay, Antarctica, 1980/81 to1992/93. Polar Biol 17:371–383

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

  • Zwally HJ, Parkinson C, Carsey F, Gloersen P, Campbell WJ, Ramseier RO (1979) Antarctic sea ice variations 1973–75. NASA Weather Climate Rev 56:335–340

    Google Scholar 

Download references

Acknowledgements

We are grateful for the members of Australian National Antarctic Research Expedition (ANARE) in Davis station for logistic supports in the field. We would like to thank Dr. Alex Fraser for providing fast ice map around Prydz Bay. Mr. David Smith kindly helped with GIS analyses.

Funding

This project was supported by Australian Antarctic Science projects #4087, #4088 and #4518 and the Japan Society for the Promotion of Science (JSPS) fellowship for research abroad to NK. The Australian Antarctic Division provided logistics support for fieldwork in Antarctica.

Author information

Authors and Affiliations

Authors

Contributions

NK, LE and CS designed research, NK, BW and JM conducted fieldwork, NK and LE analysed data, and NK wrote the paper with input from all other authors.

Corresponding author

Correspondence to Nobuo Kokubun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

All procedures and the attachment of logging devices to penguins were with approval from the Australian Antarctic Division’s Animal Ethics Committee.

Additional information

Responsible Editor: V. Paiva.

Reviewers: A. Kato and K. Ludynia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1080 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokubun, N., Emmerson, L., McInnes, J. et al. Sea-ice and density-dependent factors affecting foraging habitat and behaviour of Adélie penguins throughout the breeding season. Mar Biol 168, 97 (2021). https://doi.org/10.1007/s00227-021-03899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-021-03899-8

Navigation