Skip to main content
Log in

Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A:

Surface area (m2)

Cp :

Specific heat (J/kg K)

Dh :

Hydraulic diameter (m)

f:

Fanning friction factor

h:

Heat transfer coefficient (W/m2K)

Hch :

Height of microchannel (µm)

Htc :

Distance from thermocouple to the base of microchannel (mm)

K:

Thermal conductivity (W/m K)

Lch :

Microchannel length (mm)

ṁ:

Mass flow rate (g/s)

Nu:

Nusselt number

n:

solid particle shape factor

N:

Number of microchannel

Pr:

Prandtl number

Δpnet :

Net pressure drop along microchannels (bar)

Δpmeasured :

Total pressure drop (bar)

Δpc1, Δpc2 :

Contraction pressure loss (bar)

Δpe1, Δpe2 :

Expansion pressure loss (bar)

qf :

Heat transfer rate remove by fluid (W)

conv. :

Heat flux through heat sink base area by convection mechanism (W/m2)

Re:

Reynolds number

T:

Temperature (°C)

u̅:

Average fluid velocity (m/s)

uin :

Fluid inlet velocity (m/s)

uout :

Fluid outlet velocity (m/s)

wch :

Microchannel width (µm)

wfin :

Fin width (µm)

x:

Axial distance (mm)

η:

Fin efficiency

µ:

Viscosity

ρ:

Density

φ:

Volumetric fraction of nanoparticles

ave:

Average

b:

Bulk

bf:

Base fluid

ch:

Microchannel

fin:

Fin

in:

Inlet

nf:

Nanofluid

out:

Outlet

p:

Solid particles

s:

Solid metal for heat sink

w:

Wall

x:

Local condition

References

  1. Han Z (2008) Nanofluids with enhanced thermal transport properties. Ph.D. thesis, University of Maryland at College Park, Maryland

  2. Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8(6):36–44

    Article  Google Scholar 

  3. Tuckerman DB, Pease R (1981) High-performance heat sinking for VLSI. Electron Device Lett IEEE 2(5):126–129

    Article  Google Scholar 

  4. Garimella SV, Sobhan C (2003) Transport in microchannels—a critical review. Annu Rev Heat Transf 13:1–50

    Article  Google Scholar 

  5. Eastman JA, Phillpot S, Choi S, Keblinski P (2004) Thermal transport in nanofluids. Annu Rev Mater Res 34:219–246

    Article  MATH  Google Scholar 

  6. Mohammed HA, Bhaskaran G, Shuaib NH, Saidur R (2011) Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review. Renew Sustain Energy Rev 15(3):1502–1512

    Article  Google Scholar 

  7. Peyghambarzadeh S, Hashemabadi S, Jamnani MS, Hoseini S (2011) Improving the cooling performance of automobile radiator with Al2O3/water nanofluid. Appl Therm Eng 31(10):1833–1838

    Article  Google Scholar 

  8. Peyghambarzadeh SM, Hashemabadi SH, Naraki M, Vermahmoudi Y (2013) Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator. Appl Therm Eng 52(1):8–16. doi:10.1016/j.applthermaleng.2012.11.013

    Article  Google Scholar 

  9. Vakili M, Mohebbi A, Hashemipour H (2013) Experimental study on convective heat transfer of TiO2 nanofluids. Heat Mass Transf 49(8):1159–1165

    Article  Google Scholar 

  10. Fotukian S, Nasr Esfahany M (2010) Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass Transf 37(2):214–219

    Article  Google Scholar 

  11. Choi SUS, Eastman J (1995) Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab, Lemont, IL

    Google Scholar 

  12. Choi SUS (1998) Nanofluid technology: current status and future research. Argonne National Lab, Lemont, IL

    Google Scholar 

  13. Eastman J, Choi U, Li S, Soyez G, Thompson L, DiMelfi R (1999) Novel thermal properties of nanostructured materials. J Metastable Nanocryst Mater 2:629–634

    Article  Google Scholar 

  14. Choi S, Zhang Z, Yu W, Lockwood F, Grulke E (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79(14):2252–2254

    Article  Google Scholar 

  15. Eastman J, Choi S, Li S, Yu W, Thompson L (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    Article  Google Scholar 

  16. Mirzaei M, Dehghan M (2013) Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach. Heat Mass Transf 49(12):1803–1811

    Article  Google Scholar 

  17. Chein R, Huang G (2005) Analysis of microchannel heat sink performance using nanofluids. Appl Therm Eng 25(17):3104–3114

    Article  Google Scholar 

  18. Sivakumar A, Alagumurthi N, Senthilvelan T (2015) Experimental investigation of forced convective heat transfer performance in nanofluids of Al2O3/water and CuO/water in a serpentine shaped micro channel heat sink. Heat Mass Transf 1–10. doi:10.1007/s00231-015-1649-5

  19. Nguyen CT, Roy G, Gauthier C, Galanis N (2007) Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system. Appl Therm Eng 27(8):1501–1506

    Article  Google Scholar 

  20. Zhigang L, Ning G, Takei M (2007) An experimental investigation of single-phase heat transfer in 0.045 mm to 0.141 mm microtubes. Nanoscale Microscale Thermophys Eng 11(3–4):333–349

    Article  Google Scholar 

  21. Ho CJ, Wei LC, Li ZW (2010) An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Appl Therm Eng 30:96–103

    Article  Google Scholar 

  22. Chein R, Chuang J (2007) Experimental microchannel heat sink performance studies using nanofluids. Int J Therm Sci 46(1):57–66

    Article  Google Scholar 

  23. Lee J, Mudawar I (2007) Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. Int J Heat Mass Transf 50(3):452–463

    Article  Google Scholar 

  24. Agwu Nnanna A (2010) Thermo-hydraulic behavior of microchannel heat exchanger system. Exp Heat Transf 23(2):157–173

    Article  Google Scholar 

  25. Byrne MD, Hart RA, da Silva AK (2012) Experimental thermal–hydraulic evaluation of CuO nanofluids in microchannels at various concentrations with and without suspension enhancers. Int J Heat Mass Transf 55(9–10):2684–2691. doi:10.1016/j.ijheatmasstransfer.2011.12.018

    Article  Google Scholar 

  26. Selvakumar P, Suresh S (2012) Convective performance of CuO/water nanofluid in an electronic heat sink. Exp Therm Fluid Sci 40:57–63. doi:10.1016/j.expthermflusci.2012.01.033

    Article  Google Scholar 

  27. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1(1):3–17

    Article  Google Scholar 

  28. Wang XQ, Mujumdar AS (2008) A review on nanofluids-part I: theoretical and numerical investigations. Braz J Chem Eng 25(4):613–630

    Google Scholar 

  29. Maxwell JC (1873) A treatise on electricity and magnetism, vol 1. Oxford University Press, Oxford

    MATH  Google Scholar 

  30. Einstein A (1906) A new determination of the molecular dimensions. Ann Phys 19:289–306

    Article  Google Scholar 

  31. Batchelor G (1976) Brownian diffusion of particles with hydrodynamic interaction. J Fluid Mech 74(01):1–29

    Article  MathSciNet  MATH  Google Scholar 

  32. Nguyen C, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Angue Mintsa H (2007) Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. Int J Heat Fluid Flow 28(6):1492–1506

    Article  Google Scholar 

  33. Hamilton R, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1(3):187–191

    Article  Google Scholar 

  34. Holman JP (1986) Heat transfer. McGraw-Hill, New York

    Google Scholar 

  35. Qu W, Mudawar I (2002) Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transf 45(12):2549–2565

    Article  Google Scholar 

  36. Kays W, London A (1984) Compact heat exchangers. McGraw-Hill, New York

    Google Scholar 

  37. Keblinski P, Phillpot S, Choi S, Eastman J (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45(4):855–863

    Article  MATH  Google Scholar 

  38. Ahmad T, Hassan I (2010) Experimental analysis of microchannel entrance length characteristics using microparticle image velocimetry. J Fluids Eng 132(4):1–13. doi:10.1115/1.4001292

    Article  Google Scholar 

  39. Gamrat G, Favre-Marinet M, Asendrych D (2005) Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels. Int J Heat Mass Transf 48(14):2943–2954. doi:10.1016/j.ijheatmasstransfer.2004.10.006

    Article  Google Scholar 

  40. Jung JY, Oh HS, Kwak HY (2009) Forced convective heat transfer of nanofluids in microchannels. Int J Heat Mass Transf 52(1):466–472

    Article  Google Scholar 

  41. Israelachvili JN (1992) Intermolecular and surface forces. Academic press, New York

    Google Scholar 

  42. Godson Asirvatham L, Raja B, Mohan Lal D, Wongwises S (2011) Convective heat transfer of nanofluids with correlations. Particuology 9(6):626–631

    Article  Google Scholar 

  43. Li Q, Xuan Y (2002) Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci China Ser E Technol Sci 45(4):408–416

    Google Scholar 

  44. Maïga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N (2005) Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow 26(4):530–546

    Article  Google Scholar 

  45. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43(19):3701–3707

    Article  MATH  Google Scholar 

  46. Wu X, Wu H, Cheng P (2009) Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels. J Micromech Microeng 19(10):105020

    Article  Google Scholar 

  47. Azizi Z, Alamdari A, Malayeri MR (2016) Thermal performance and friction factor of a cylindrical microchannel heat sink cooled by Cu-water nanofluid. Appl Therm Eng 99:970–978

    Article  Google Scholar 

  48. Peyghambarzadeh SM, Hashemabadi SH, Chabi AR, Salimi M (2014) Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels. Energy Convers Manag 86:28–38

    Article  Google Scholar 

  49. Salimi GM, Peyghambarzadeh SM, Hashemabadi SH, Chabi A (2015) Experimental investigation of convective heat transfer of Al2O3/water nanofluid through the micro heat exchanger. Modares Mech Eng 15(2):270–280

    Google Scholar 

  50. Azizi Z, Alamdari A, Malayeri MR (2015) Convective heat transfer of Cu–water nanofluid in a cylindrical microchannel heat sink. Energy Convers Manag 101:515–524

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Peyghambarzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabi, A.R., Zarrinabadi, S., Peyghambarzadeh, S.M. et al. Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink. Heat Mass Transfer 53, 661–671 (2017). https://doi.org/10.1007/s00231-016-1851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1851-0

Keywords

Navigation