Skip to main content
Log in

Moisture sorption characteristics and dynamic mechanical thermal analysis of dried petiole and rhizome of red water lily (Nymphaea x rubra)

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This research aimed to experimentally determine moisture sorption characteristics and mechanical thermal properties of different parts of red water lily (Nymphaea x rubra). The data obtained from dynamic vapor sorption (DVS) were modeled with six sorption isotherm models. The shape of sorption isotherms of dried petiole and rhizome was classified as Type III and II, respectively. Peleg model was the best fit with the experimental data. GAB and BET models were used to estimate monolayer moisture content (M0) of the samples and M0 of petiole ranged between 7.17 to 8.291% d.b. and 10.455 to 10.588% d.b. for GAB and BET models, respectively and M0 of rhizome ranged between 6.208 to 7.741% d.b. and 3.566 to 3.669% d.b. for GAB and BET models, respectively. Blahovec-Yanniotis model was used to describe the amount of bounded water and solution water in material and the contribution of solution water played an important role in both adsorption and desorption processes of dried petiole and rhizome. Dried red water lilies were equilibrated at different relative humidity levels. Dynamic mechanical thermal analysis (DMTA) was used to estimate the glass transition of the samples at different water activities. Increasing the solicitation frequency shifted the temperature of the relaxation to a higher temperature and Arrhenius equation described well the frequency dependency of the transition temperature. The apparent activation energies (Ea) of dried petiole and rhizome were in the range from 217.98 to 248.49 kJ/mol and 187.34 to 230.30 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

A, B, C, a, a1, a2, b, b1, b2 c, d:

Model constants

AOAC:

Association of Official Analytical Chemists

aw :

Water activity

\({B}_{x}\) :

Bias limit in a predicted parameter

d.b.:

Dry basis

\(df\) :

Degree of freedom

DSC:

Differential scanning calorimetry

DVS:

Dynamic vapor sorption

DMTA:

Dynamic mechanical thermal analysis

Ea :

Apparent activation energy (kJ/mol)

E′:

Storage modulus (Pa)

E″:

Loss modulus (Pa)

\(f\) :

Frequency (Hz)

\({k}_{0}\) :

Rate of moisture changing for zero order equation (% d.b. /min)

\({k}_{1}\) :

Rate of moisture changing for first order equation (% d.b. /min)

\({k}_{2}\) :

Kinetic parameters of moisture sorption process

\({k}_{3}\) :

Kinetic parameters of diffusion process

Me :

Equilibrium moisture content (% d.b.)

Mo :

Monolayer moisture content (% d.b.)

\(m\) :

Moisture content at any time (% d.b.)

\({m}_{0}\) :

Moisture content of sample at time zero (% d.b.)

\(N\) :

Number of data

\(n\) :

Number of model parameter

\({P}_{x}\) :

Precision limit for a sample

R:

Universal gas constant (8.314 J/mol K)

\({R}^{2}\) :

Co-efficient of determination

RH:

Relative humidity (%)

RHe :

Equilibrium relative humidity (%)

RMSE:

Root mean square error

SEE:

Standard error of estimate

\({S}_{x}\) :

Precision index

T:

Temperature of tan δ maximum (K)

tan δ:

E″/ E′

Tg :

Glass transition temperature (ºC)

t :

Process time (min)

w.b.:

Wet basis

\({w}_{x}\) :

Overall uncertainty in a predicted parameter

\(\overline{x }\) :

Mean of sample population

x 1 , x 2 , , x n :

Independent parameters

χ2 :

Chi-square

\(Y\) :

Experimental data

\(\overline Y\) :

Mean of sample population

\(Y'\) :

Predicted data

References

  1. Lim TK (2006) Edible medicinal and non-medicinal plants: volume 11, Modified stems, roots and bulbs. Springer International Publishing, Switzerland

  2. Devi SA, Thongam B, Handique PJ (2015) Nymphaea rubra Roxb. ex Andrews cultivated as an ornamental, food and vegetable in the North Eastern region of India. Genet Resour Crop Evol 62:315–320. https://doi.org/10.1007/s10722-014-0177-3

    Article  Google Scholar 

  3. Barbosa-Canovas GV, Fontana AJ, Schmidt SJ, Labuza TP (2007) Water Activity in Foods: Fundamentals and Applications. John Wiley & Sons, New Jersey. https://doi.org/10.1002/9780470376454

    Article  Google Scholar 

  4. Cladera-Olivera F, Pettermann AC, Zapata-Norena CP, Wada K, Ferreira-Marczakm LD (2008) Thermodynamic properties of moisture desorption of raw pinhao (Araucaria angustifolia seeds). Int J Food Sci Technol 43:900–907. https://doi.org/10.1111/j.1365-2621.2007.01540.x

    Article  Google Scholar 

  5. Brunauer S, Deming WE, Troller E (1940) On the theory of Van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732. https://doi.org/10.1021/ja01864a025

    Article  Google Scholar 

  6. Chirife J, Iglesias HA (1978) Equations for fitting water sorption isotherms of foods: Part 1—A review. J Food Technol 13:159–174. https://doi.org/10.1111/j.1365-2621.1978.tb00792.x

    Article  Google Scholar 

  7. Peleg M (1993) Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J Food Process Eng 16:21–37. https://doi.org/10.1111/j.1745-4530.1993.tb00160.x

    Article  Google Scholar 

  8. Pickett G (1945) Modification of the Brunauer-Emmett-Teller theory of multimolecular adsorption. J Am Chem Soc 67:1958–1962. https://doi.org/10.1021/ja01227a027

    Article  Google Scholar 

  9. Van den Berg C, Bruin S (1981) Water activity and its estimation in food systems: theoretical aspects. In: Rockland LB, Stewart GF (eds) Water activity: Influences on food quality. Academic, New York, pp 147–177

    Google Scholar 

  10. Blahovec J, Yanniotis S (2009) Modified classification of sorption isotherms. J Food Eng 91:72–77. https://doi.org/10.1016/j.jfoodeng.2008.08.007

    Article  Google Scholar 

  11. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  Google Scholar 

  12. Mrad ND, Bonazzi C, Boudhrioua N, Kechaou N, Courtois F (2012) Moisture sorption isotherms, thermodynamic properties, and glass transition of pears and apples. Dry Technol 30:1397–1406. https://doi.org/10.1080/07373937.2012.683843

    Article  Google Scholar 

  13. Menard KP (2008) Dynamic mechanical analysis: A practical introduction, 2nd ed. CRC Press, Boca Roton. https://doi.org/10.1201/9781420053135

  14. Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bur Stand 81A:89–96. https://doi.org/10.6028/jres.081A.011

    Article  Google Scholar 

  15. AOAC International (AOAC) (2000) Association of Official Analytical Chemist, Official methods of analysis of AOAC international, 17th edn. AOAC international, Gaithersburg, MD

    Google Scholar 

  16. Phahom T, Kerr WL, Pegg RB, Phoungchandang S (2017) Effect of packaging types and storage conditions on quality aspects of dried Thunbergia laurifolia leaves and degradation kinetics of bioactive compounds. J Food Sci Technol 54:4405–4415. https://doi.org/10.1007/s13197-017-2917-9

    Article  Google Scholar 

  17. Venegas MJ, Fregoso-Israel E, Escamilla R, Pfeiffer H (2007) Kinetic and reaction mechanism of CO2 sorption on Li4SiO4: Study of the particle size effect. Ind Eng Chem Res 46:2407–2412. https://doi.org/10.1021/ie061259e

    Article  Google Scholar 

  18. Diab T, Biliaderis CG, Gerasopoulos D, Sfakiotakis E (2001) Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. J Sci Food Agric 81:988–1000. https://doi.org/10.1002/jsfa.883

    Article  Google Scholar 

  19. Belghith A, Azzouz S, ElCafsi A (2016) Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato. Heat Mass Transf 52:407–419. https://doi.org/10.1007/s00231-015-1560-0

    Article  Google Scholar 

  20. Ghnimi T, Hassini L, Bagane M (2016) Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves. Heat Mass Transf 52:2649–2659. https://doi.org/10.1007/s00231-016-1770-0

    Article  Google Scholar 

  21. Hami AE, Pougnet P (2015) Embedded mechatronic system 2: Analysis of failures, modeling, simulation and optimization. ISTE Press – Elsevier. https://doi.org/10.1016/C2014-0-04711-9

  22. Özahi E, Demir H (2014) Presentation of a test rig with its experimental procedure and uncertainty analysis of measurements for batch type fluidized bed drying of corn and unshelled pistachio nut. Measurement 53:117–127. https://doi.org/10.1016/j.measurement.2014.03.043

    Article  Google Scholar 

  23. Darici S, Kilic A (2020) Comparative study on the performances of solar air collectors with trapezoidal corrugated and flat absorber plates. Heat Mass Transf 56:1833–1843. https://doi.org/10.1007/s00231-020-02815-y

    Article  Google Scholar 

  24. Mbarek R, Mihoubi D (2019) Thermodynamic properties and water desorption isotherms of Golden Delicious apples. Heat Mass Transf 55:1405–1418. https://doi.org/10.1007/s00231-018-2527-8

    Article  Google Scholar 

  25. Cheng X, Adhikari B, Xie A, Jiang H, Xu S, Jai Q (2020) Moisture sorption behaviour and thermodynamic properties of adsorbed water of Jerusalem artichoke (Helianthus tuberosus L.) powder. Int Food Res J 27:505–515

    Google Scholar 

  26. Witczak T, Witczak M, Socha R, Pien AS, Grzesik M (2017) Candied orange peel produced in solution with various sugar compositions: sugar composition and sorption properties of the product. J Food Process Eng 40:1–12. https://doi.org/10.1111/jfpe.12367

    Article  Google Scholar 

  27. Chang LS, Karim R, Mohammed AS, Chai KF, Ghazali HM (2019) Moisture sorption isotherm and shelf-life prediction of anticaking agent incorporated spray-dried soursop (Annona muricata L.) powder. J Food Process Eng 42:1–10. https://doi.org/10.1111/jfpe.13134

    Article  Google Scholar 

  28. Thalerngnawacharta S, Duangmala K (2016) Influence of humectants on the drying kinetics, water mobility, and moisture sorption isotherm of osmosed air-dried papaya. Dry Technol 34:574–583. https://doi.org/10.1080/07373937.2015.1064942

    Article  Google Scholar 

  29. Henriot CP, Cuenot Q, Levrey LH, Loup C, Chiarello L, Masclaux H, Bornette G (2019) Relationships between key functional traits of the waterlily Nuphar lutea and wetland nutrient content. Peer J 7:e7861. https://doi.org/10.7717/peerj.7861

    Article  Google Scholar 

  30. Hawa LC, Ubaidillah U, Damayanti R, Hendrawan Y (2020) Moisture sorption isotherms of modified cassava flour during drying and storage. Heat Mass Transf 56:2389–2396. https://doi.org/10.1007/s00231-020-02866-1

    Article  Google Scholar 

  31. Khawas P, Deka SC (2017) Moisture sorption isotherm of underutilized culinary banana flour and its antioxidant stability during storage. J Food Process Preserv 41:1–10. https://doi.org/10.1111/jfpp.13087

    Article  Google Scholar 

  32. Bo L, Rui L, Haiyan G, Wang S (2017) Moisture sorption characteristics of full fat and defatted pistachio kernel flour. Int J Agric Biol Eng 10:283–294. https://doi.org/10.3965/j.ijabe.20171003.2838

    Article  Google Scholar 

  33. Sun X, Jin X, Fu N, Chen X (2020) Effects of different pretreatment methods on the drying characteristics and quality of potatoes. Food Sci Nutr 8:5767–5775. https://doi.org/10.1002/fsn3.1579

    Article  Google Scholar 

  34. Heldman DR, Lund DB (1992) Handbook of food engineering. Marcel Dekker, New York

    Google Scholar 

  35. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2002) Moisture sorption isotherm characteristics of food products: A review. Trans Inst Chem Eng 80:118–128. https://doi.org/10.1205/09603080252938753

    Article  Google Scholar 

  36. Aguirre-Alvarez G, Foster T, Hill SE (2013) Modelling of isotherms and their hysteresis analysis in gelatin from different sources. CYTA - J Food 11:68–74. https://doi.org/10.1080/19476337.2012.692122

    Article  Google Scholar 

  37. Srikiatden J, Roberts JS (2007) Moisture transfer in solid food materials: A review of mechanisms, models and measurements. Int J Food Prop 10:739–777. https://doi.org/10.1080/10942910601161672

    Article  Google Scholar 

  38. Brett B, Figueroa M, Sandoval AJ, Barreiro JA, Muller AJ (2009) Moisture sorption characteristics of starchy products: oat flour and rice flour. Food Biophys 4:151–157. https://doi.org/10.1007/s11483-009-9112-0

    Article  Google Scholar 

  39. Xing C, Liu X, Jin Q, Li J, Huang J, Liu Y, Wang X (2012) Moisture sorption thermodynamics of Camellia oleifera. Food Biophys 7:163–172. https://doi.org/10.1007/s11483-012-9254-3

    Article  Google Scholar 

  40. Arslan-Tontul S (2021) Moisture sorption isotherm and thermodynamic analysis of quinoa grains. Heat Mass Transf 57:543–550. https://doi.org/10.1007/s00231-020-02978-8

    Article  Google Scholar 

  41. Moussaoui H, Kouhila M, Lamsyehe H, Idlimam A, Lamharrar A (2020) Moisture sorption measurements and thermophysical characterization of the Taraxacum officinale leaves and root. Heat Mass Transf 56:2065–2077. https://doi.org/10.1007/s00231-020-02838-5

    Article  Google Scholar 

  42. Cervenka L, Kubinova J, Juszczak L, Witczak M (2012) Moisture sorption isotherms and glass transition temperature of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) roots at 25°C. Food Sci Technol Int 18:81–91. https://doi.org/10.1177/1082013211414260

    Article  Google Scholar 

  43. Rockland LB (1969) Water activity and storage stability. Food Technol 23:1241–1249

    Google Scholar 

  44. Yanniotis S, Blahovec J (2009) Model analysis of sorption isotherms. LWT - Food Sci Technol 42:1688–1695. https://doi.org/10.1016/j.lwt.2009.05.010

    Article  Google Scholar 

  45. Dalgıç AC, Pekmez H, Belibağlı KB (2012) Effect of drying methods on the moisture sorption isotherms and thermodynamic properties of mint leaves. J Food Sci Technol 49:439–449. https://doi.org/10.1007/s13197-011-0302-7

    Article  Google Scholar 

  46. Zeymer JS, Correa PC, Oliveira GHH, Baptestini FM, Campos RC (2019) Mathematical modeling and hysteresis of sorption isotherms for paddy rice grains. Engenharia Agricola 39:524–532. https://doi.org/10.1590/1809-4430-Eng.Agric.v39n4p524-532/2019

    Article  Google Scholar 

  47. Kapsalis JG (1987) Influences of hysteresis and temperature on moisture sorption isotherms. In: Rockland LB, Beuchat LR (eds) Water activity: Theory and applications to food. Marcel Dekker Inc, New York, pp 173–213

    Google Scholar 

  48. Johnson PNT, Brennan JG (2000) Kinetics of moisture absorption by plantain flour. J Food Eng 45:33–36. https://doi.org/10.1016/S0260-8774(00)00038-8

    Article  Google Scholar 

  49. Doymaz I (2014) Mathematical modeling of drying of tomato slices using infrared radiation. J Food Process Preserv 38:389–396. https://doi.org/10.1111/j.1745-4549.2012.00786.x

    Article  Google Scholar 

  50. Phahom T, Phoungchandang S (2018) Drying characteristics and quality attributes of Thunbergia laurifolia leaves using microwave drying. APST 23:1–12. https://doi.org/10.14456/apst.2018.24

  51. Phahom T, Juntharat N, Premsuttarat P, Paosunthia Y, Roudaut G (2021) Evaluation of desorption isotherms, drying characteristics and rehydration properties of crab stick by-product. Heat Mass Transf. https://doi.org/10.1007/s00231-020-02982-y

    Article  Google Scholar 

  52. Roudaut G, Maglione M, Dusschoten DV, Meste ML (1999) Molecular mobility in glassy bread: A multispectroscopy approach. Cereal Chem 76:70–77. https://doi.org/10.1094/CCHEM.1999.76.1.70

    Article  Google Scholar 

  53. Bai Y, Jin L (2008) Characterization of frequency-dependent glass transition temperature by Vogel-Fulcher relationship. J Phys D Appl Phys 41:1–4. https://doi.org/10.1088/0022-3727/41/15/152008

    Article  Google Scholar 

  54. Yin P, Dong X, Zhou W, Zha D, Xu J, Guo B, Li P (2020) A novel method to produce sustainable biocomposites based on thermoplastic corn-starch reinforced by polyvinyl alcohol fibers. RSC Adv 10:23632–23643. https://doi.org/10.1039/D0RA04523C

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the junior research fellowships program of The French Embassy in Bangkok for the financial support, in cooperation between L’Institut Agro Dijon and Suranaree University of Technology.

Funding

This research was supported by the junior research fellowships program of The French Embassy in Bangkok in cooperation between L’Institut Agro Dijon and Suranaree University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traiphop Phahom.

Ethics declarations

Conflicts of interests

On behalf of all authors, the corresponding author declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phahom, T., Roudaut, G. Moisture sorption characteristics and dynamic mechanical thermal analysis of dried petiole and rhizome of red water lily (Nymphaea x rubra). Heat Mass Transfer 59, 309–328 (2023). https://doi.org/10.1007/s00231-022-03258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03258-3

Keywords

Navigation