Skip to main content
Log in

Salt-Promoted Synthesis of RNA-like Molecules in Simulated Hydrothermal Conditions

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

A fundamental problem in origins of life research is how the first polymers with the properties of nucleic acids were synthesized and incorporated into living systems on the prebiotic Earth. Here, we show that RNA-like polymers can be synthesized non-enzymatically from 5′-phosphate mononucleosides in salty environments. The polymers were identified and analyzed by gel electrophoresis, nanopore analysis, UV spectra, and action of RNases. The synthesis of phosphodiester bonds is driven by the chemical potential made available in the fluctuating hydrated and anhydrous conditions of hydrothermal fields associated with volcanic land masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adamala K, Szostak J (2013) Competition between model protocells driven by an encapsulated catalyst. Nat Chem 5:495–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Attwater J, Wochner A, Holliger P (2013) In-ice evolution of RNA polymerase ribozyme activity. Nat Chem 5:1011–1018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borer PN, Dengler B, Tinoco I, Uhlenbeck OC (1974) Stability of ribonucleic acid double-stranded helices. J Mol Biol 86:843–853

    Article  CAS  PubMed  Google Scholar 

  • Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379

    Article  CAS  PubMed  Google Scholar 

  • Deamer D, Singaram S, Rajamani S, Kompanichenko V, Guggenheim S (2006) Self-assembly processes in the prebiotic environment. Philos Trans R Soc Lond B 361:1809–1818

    Article  CAS  Google Scholar 

  • DeGuzman V, Vercoutere W, Shenasa H, Deamer D (2014) Generation of oligonucleotides under hydrothermal conditions by non-enzymatic polymerization. J Mol Evol 78:251–262

    Article  CAS  PubMed  Google Scholar 

  • Doty P, Boedtker H, Fresco JR, Haselkorn R, Litt M (1959) Secondary structure in ribonucleic acids. Proc Natl Acad Sci USA 45:482–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Article  Google Scholar 

  • Gralla J, Delisi C (1974) mRNA is expected to form stable secondary structures. Nature 248:330–332

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Ferris JP (2003) Synthesis of 35–40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. Chem Commun 21:1458–1461

    Article  Google Scholar 

  • Huang W, Ferris JP (2006) One-step, regioselective synthesis of up to 50-mers of RNA oligomers by montmorillonite catalysis. J Am Chem Soc 128:8914–8919

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Orgel LE (1983) A nonenzymatic RNA polymerase model. Science 219:859–862

    Article  CAS  PubMed  Google Scholar 

  • Kanavarioti A, Monnard PA, Deamer DW (2001) Eutectic phases in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology 1:271–281

    Article  CAS  PubMed  Google Scholar 

  • Lohrmann R, Orgel LE (1973) Prebiotic activation processes. Nature 244:418–420

    Article  CAS  PubMed  Google Scholar 

  • Meli M, Vergne J, Décout JL, Maurel MC (2002) Adenine–aptamer complexes: a bipartite RNA site that binds the adenine nucleic base. J Biol Chem 277:2104–2111

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (1987) Evolution of the genetic apparatus: a review. Cold Spring Harb Symp Quant Biol 52:9–16

    Article  CAS  PubMed  Google Scholar 

  • Rajamani S, Vlassov A, Benner S, Coombs A, Olasagasti F, Deamer D (2008) Lipid-assisted synthesis of RNA-like polymers from mononucleotides. Orig Life Evol Biosph 38:57–74

    Article  CAS  PubMed  Google Scholar 

  • Safaee N, Noronha AM, Rodionov D, Kozlov G, Wilds C, Sheldrick GM, Gehring K (2013) Structure of the parallel duplex of poly(A) RNA: evaluation of a 50 year-old prediction. Angew Chem 52:1–5

    Article  Google Scholar 

  • Schwendinger MG, Rode BM (1992) Investigations on the mechanism of the salt-induced peptide formation. Orig Life Evol Biosph 22:349–359

    Article  CAS  PubMed  Google Scholar 

  • Schwendinger MG, Tattler R, Saetia S, Liedl KR, Kroemer RT, Rode BM (1995) Salt induced peptide formation: on the selectivity of the copper induced peptide formation under possible prebiotic conditions. Inorg Chim Acta 228:207–214

    Article  CAS  Google Scholar 

  • Usher DA, McHale AH (1976) Nonenzymatic joining of oligoadenylates on a polyuridylic acid template. Science 192:53–54

    Article  CAS  PubMed  Google Scholar 

  • Vercoutere W, Winters-Hilt S, Olsen H, Deamer DW, Haussler D, Akeson M (2001) Rapid discrimination among individual DNA molecules at single nucleotide resolution using a nanopore instrument. Nat Biotechnol 19:248–250

    Article  CAS  PubMed  Google Scholar 

  • Verlander MS, Lohrmann R, Orgel LE (1973) Catalysts for the self-polymerization of adenosine cyclic 2′,3′-phosphate. J Mol Evol 2:303–316

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1967) The genetic code: the molecular basis for genetic expression. Harper & Row, New York, p 186

    Google Scholar 

Download references

Acknowledgments

The hydrothermal simulation research is supported by a generous gift from the Harry Lonsdale Research Award. We are grateful to Jacques Vergne and to Jean-Luc Décout for valuable discussions related to this work, and Veronica De Guzman for expert nanopore analysis of the hydrothermal polymers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marie-Christine Maurel or David Deamer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da Silva, L., Maurel, MC. & Deamer, D. Salt-Promoted Synthesis of RNA-like Molecules in Simulated Hydrothermal Conditions. J Mol Evol 80, 86–97 (2015). https://doi.org/10.1007/s00239-014-9661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-014-9661-9

Keywords

Navigation