Skip to main content

Advertisement

Log in

The Evolution of Unusually Small Amelogenin Genes in Cetaceans; Pseudogenization, X–Y Gene Conversion, and Feeding Strategy

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Among extant cetaceans, mysticetes are filter feeders that do not possess teeth and use their baleen for feeding, while most odontocetes are considered suction feeders, which capture prey by suction without biting or chewing with teeth. In the present study, we address the functionality of amelogenin (AMEL) genes in cetaceans. AMEL encodes a protein that is specifically involved in dental enamel formation and is located on the sex chromosomes in eutherians. The X-copy AMELX is functional in enamel-bearing eutherians, whereas the Y-copy AMELY appears to have undergone decay and was completely lost in some species. Consistent with these premises, we detected various deleterious mutations and/or non-canonical splice junctions in AMELX of mysticetes and four suction feeding odontocetes, Delphinapterus leucas, Monodon monoceros, Kogia breviceps, and Physeter macrocephalus, and in AMELY of mysticetes and odontocetes. Regardless of the functionality, both AMELX and AMELY are equally and unusually small in cetaceans, and even their functional AMELX genes presumably encode a degenerate core region, which is thought to be essential for enamel matrix assembly and enamel crystal growth. Furthermore, our results suggest that the most recent common ancestors of extant cetaceans had functional AMELX and AMELY, both of which are similar to AMELX of Platanista minor. Similar small AMELX and AMELY in archaic cetaceans can be explained by gene conversion between AMELX and AMELY. We speculate that common ancestors of modern cetaceans employed a degenerate AMELX, transferred from a decaying AMELY by gene conversion, at an early stage of their transition to suction feeders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi M, Hornig H, Padgett RA, Reiser J, Weissmann C (1986) Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47:555–565

    CAS  PubMed  Google Scholar 

  • Armfield BA, Zheng ZG, Bajpai S, Vinyard CJ, Thewissen JGM (2013) Development and evolution of the unique cetacean dentition. PeerJ 1:e24

    PubMed  PubMed Central  Google Scholar 

  • Bai C, Li Y, Yan S, Fang H, Sun B, Zhang J, Zhao Z (2016) Identification and characterization of the cDNA sequence encoding amelogenin in rabbit (Oryctolagus cuniculus). Gene 576:770–775

    CAS  PubMed  Google Scholar 

  • Bartlett JD (2013) Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent 2013:684607

    PubMed  PubMed Central  Google Scholar 

  • Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho TJ, Koutseva N, Zaghlul S, Graves T, Rock S et al (2014) Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508:494–499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benton MJ, Donoghue PC (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24:26–53

    CAS  PubMed  Google Scholar 

  • Berta A, Deméré TA (2018) Baleen whales, evolution. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of marine mammals. Academic Press, London, pp 69–75

    Google Scholar 

  • Boessenecker RW, Fraser D, Churchill M, Geisler JH (2017) A toothless dwarf dolphin (Odontoceti: Xenorophidae) points to explosive feeding diversification of modern whales (Neoceti). Proc R Soc B 284(1861):20170531

    PubMed  PubMed Central  Google Scholar 

  • Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, Grutzner F, Kaessmann H (2014) Origins and functional evolution of Y chromosomes across mammals. Nature 508:488–493

    CAS  PubMed  Google Scholar 

  • Delak K, Harcup C, Lakshminarayanan R, Sun Z, Fan Y, Moradian-Oldak J, Evans JS (2009) The tooth enamel protein, porcine amelogenin, is an intrinsically disordered protein with an extended molecular configuration in the monomeric form. Biochemistry 48:2272–2281

    CAS  PubMed  Google Scholar 

  • Delgado S, Girondot M, Sire JY (2005) Molecular evolution of amelogenin in mammals. J Mol Evol 60:12–30

    CAS  PubMed  Google Scholar 

  • Delgado S, Ishiyama M, Sire JY (2007) Validation of amelogenesis imperfecta inferred from amelogenin evolution. J Dent Res 86:326–330

    CAS  PubMed  Google Scholar 

  • Delgado S, Vidal N, Veron G, Sire JY (2008) Amelogenin, the major protein of tooth enamel: a new phylogenetic marker for ordinal mammal relationships. Mol Phylogenet Evol 47:865–869

    CAS  PubMed  Google Scholar 

  • Deméré TA, McGowen MR, Berta A, Gatesy J (2008) Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst Biol 57:15–37

    PubMed  Google Scholar 

  • Duret L, Galtier N (2009) Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 10:285–311

    CAS  PubMed  Google Scholar 

  • Fahlke JM, Bastl KA, Semprebon GM, Gingerich PD (2013) Paleoecology of archaeocete whales throughout the Eocene: Dietary adaptations revealed by microwear analysis. Palaeogeogr Palaeoclimatol Palaeoecol 386:690–701

    Google Scholar 

  • Fincham AG, Simmer JP (1997) Amelogenin proteins of developing dental enamel. In: Chadwick DL, Cardew G (eds) Dental enamel. Wiley, Chichester, pp 118–134

    Google Scholar 

  • Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126:270–299

    CAS  PubMed  Google Scholar 

  • Fordyce RE (2002) Simocetus rayi (Odontoceti: Simocetidae, new family): a bizarre new archaic Oligocene dolphin from the eastern North Pacific. Smithson Contrib Paleobiol 93:185–222

    Google Scholar 

  • Fordyce RE (2018) Cetacean evolution. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of marine mammals. Academic Press, London, pp 758–763

    Google Scholar 

  • Fordyce RE, Marx FG (2018) Gigantism precedes filter feeding in baleen whale evolution. Curr Biol 28(1670–1676):e1672

    Google Scholar 

  • Gatesy J (2009) Whales and even-toed ungulates (Cetartiodactyla). In: Hedges B, Kumar S (eds) The timetree of life. Oxford Univ. Press, New York, pp 511–515

    Google Scholar 

  • Gatesy J, Geisler JH, Chang J, Buell C, Berta A, Meredith RW, Springer MS, McGowen MR (2013) A phylogenetic blueprint for a modern whale. Mol Phylogenet Evol 66:479–506

    PubMed  Google Scholar 

  • Geisler JH (2018) Cetartiodactyla. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of marine mammals. Academic Press, London, pp 189–191

    Google Scholar 

  • Gibson CW, Golub EE, Abrams WR, Shen G, Ding W, Rosenbloom J (1992) Bovine amelogenin message heterogeneity: alternative splicing and Y-chromosomal gene transcription. Biochemistry 31:8384–8388

    CAS  PubMed  Google Scholar 

  • Gibson CW, Yuan ZA, Hall B, Longenecker G, Chen E, Thyagarajan T, Sreenath T, Wright JT, Decker S, Piddington R et al (2001) Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 276:31871–31875

    CAS  PubMed  Google Scholar 

  • Graves JA (1995) The evolution of mammalian sex chromosomes and the origin of sex determining genes. Philos Trans R Soc Lond B 350(1333):305–311

    CAS  Google Scholar 

  • Graves JA (2006) Sex chromosome specialization and degeneration in mammals. Cell 124:901–914

    PubMed  Google Scholar 

  • Hocking DP, Marx FG, Fitzgerald EMG, Evans AR (2017) Ancient whales did not filter feed with their teeth. Biol Lett 13:20170348

    PubMed  PubMed Central  Google Scholar 

  • Hu CC, Ryu OH, Yamakoshi Y, Zhang CH, Cao X, Qian Q, Simmer JP (2002) Pig amelogenin gene expresses a unique exon 4. Connect Tissue Res 43:435–440

    CAS  PubMed  Google Scholar 

  • Hu Y, Smith CE, Cai Z, Donnelly LA, Yang J, Hu JC, Simmer JP (2016) Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelx-/- mice and Amelx+/- lyonization. Mol Genet Genomic Med 4:641–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome Res 9:868–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa H, Amasaki H (1995) Development and physiological degradation of tooth buds and development of rudiment of baleen plate in southern minke whale, Balaenoptera acutorostrata. J Vet Med Sci 57:665–670

    CAS  PubMed  Google Scholar 

  • Ishiyama M (1987) Enamel structure in odontocete whales. Scanning Microsc 1:1071–1079

    CAS  PubMed  Google Scholar 

  • Ishiyama M, Mikami M, Shimokawa H, Oida S (1998) Amelogenin protein in tooth germs of the snake Elaphe quadrivirgata, immunohistochemistry, cloning and cDNA sequence. Arch Histol Cytol 61:467–474

    CAS  PubMed  Google Scholar 

  • Iwase M, Satta Y, Hirai Y, Hirai H, Imai H, Takahata N (2003) The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species. Proc Natl Acad Sci USA 100:5258–5263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin T, Ito Y, Luan X, Dangaria S, Walker C, Allen M, Kulkarni A, Gibson C, Braatz R, Liao X et al (2009) Elongated polyproline motifs facilitate enamel evolution through matrix subunit compaction. PLoS Biol 7:e1000262

    PubMed  PubMed Central  Google Scholar 

  • Johnston C, Berta A (2011) Comparative anatomy and evolutionary history of suction feeding in cetaceans. Mar Mammal Sci 27:493–513

    Google Scholar 

  • Kalmar L, Homola D, Varga G, Tompa P (2012) Structural disorder in proteins brings order to crystal growth in biomineralization. Bone 51:528–534

    CAS  PubMed  Google Scholar 

  • Kawasaki K (2013) Odontogenic ameloblast-associated protein (ODAM) and amelotin: Major players in hypermineralization of enamel and enameloid. J Oral Biosci 55:85–90

    CAS  Google Scholar 

  • Kawasaki K, Amemiya CT (2014) SCPP genes in the coelacanth: tissue mineralization genes shared by sarcopterygians. J Exp Zool B Mol Dev Evol 322:390–402

    CAS  PubMed  Google Scholar 

  • Kawasaki K, Weiss KM (2003) Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster. Proc Natl Acad Sci USA 100:4060–4065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawasaki K, Buchanan AV, Weiss KM (2009) Biomineralization in humans: making the hard choices in life. Annu Rev Genet 43:119–142

    CAS  PubMed  Google Scholar 

  • Kawasaki K, Lafont AG, Sire JY (2011) The evolution of milk casein genes from tooth genes before the origin of mammals. Mol Biol Evol 28:2053–2061

    CAS  PubMed  Google Scholar 

  • Kawasaki K, Hu JC, Simmer JP (2014) Evolution of Klk4 and enamel maturation in eutherians. Biol Chem 395:1003–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacruz RS, Lakshminarayanan R, Bromley KM, Hacia JG, Bromage TG, Snead ML, Moradian-Oldak J, Paine ML (2011) Structural analysis of a repetitive protein sequence motif in strepsirrhine primate amelogenin. PLoS ONE 6:e18028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286:964–967

    CAS  PubMed  Google Scholar 

  • Lau EC, Mohandas TK, Shapiro LJ, Slavkin HC, Snead ML (1989) Human and mouse amelogenin gene loci are on the sex chromosomes. Genomics 4:162–168

    CAS  PubMed  Google Scholar 

  • Lemaitre C, Braga MD, Gautier C, Sagot MF, Tannier E, Marais GA (2009) Footprints of inversions at present and past pseudoautosomal boundaries in human sex chromosomes. Genome Biol Evol 1:56–66

    PubMed  PubMed Central  Google Scholar 

  • Li X, Romero P, Rani M, Dunker AK, Obradovic Z (1999) Predicting protein disorder for N-, C-, and internal regions. Genome Inform Ser Workshop Genome Inform 10:30–40

    CAS  PubMed  Google Scholar 

  • Lindberg DR, Pyenson ND (2007) Things that go bump in the night: evolutionary interactions between cephalopods and cetaceans in the tertiary. Lethaia 40:335–343

    Google Scholar 

  • Macé M, Crouau-Roy B (2008) A highly polymorphic insertion in the Y-chromosome amelogenin gene can be used for evolutionary biology, population genetics and sexing in Cetacea and Artiodactyla. BMC Genet 9:64

    PubMed  PubMed Central  Google Scholar 

  • Marais G, Galtier N (2003) Sex chromosomes: how X-Y recombination stops. Curr Biol 13:R641–643

    CAS  PubMed  Google Scholar 

  • Marx FG, Tsai CH, Fordyce RE (2015) A new Early Oligocene toothed 'baleen' whale (Mysticeti: Aetiocetidae) from western North America: one of the oldest and the smallest. R Soc Open Sci 2:150476

    PubMed  PubMed Central  Google Scholar 

  • Marx FG, Hocking DP, Park T, Ziegler T, Evans AR, Fitzgerald EMG (2016) Suction feeding preceded filtering in baleen whale evolution. Mem Mus Vic 75:71–82

    Google Scholar 

  • McGowen MR, Spaulding M, Gatesy J (2009) Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylogenet Evol 53:891–906

    CAS  PubMed  Google Scholar 

  • Meredith RW, Gatesy J, Murphy WJ, Ryder OA, Springer MS (2009) Molecular decay of the tooth gene Enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet 5:e1000634

    PubMed  PubMed Central  Google Scholar 

  • Meredith RW, Gatesy J, Cheng J, Springer MS (2011) Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales. Proc Biol Sci 278:993–1002

    CAS  PubMed  Google Scholar 

  • Montgelard C, Catzeflis FM, Douzery E (1997) Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol Biol Evol 14:550–559

    CAS  PubMed  Google Scholar 

  • Moradian-Oldak J (2012) Protein-mediated enamel mineralization. Front Biosci (Landmark Ed) 17:1996–2023

    Google Scholar 

  • Moradian-Oldak J, Lakshminarayanan R (2010) Intrinsic disorder in amelogenin. In: Goldberg M (ed) Amelogenins: multifaceted proteins for dental and bone formation and repair. Bentham Science, Sharjah, UAE, pp 106–132

    Google Scholar 

  • Nanci A (2017) Ten Cate's oral histology: development, structure, and function. Elsevier, St-Louis

    Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford Univ. Press, New York

    Google Scholar 

  • Nikaido M, Rooney AP, Okada N (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci USA 96:10261–10266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    CAS  PubMed  Google Scholar 

  • Pandey RS, Wilson Sayres MA, Azad RK (2013) Detecting evolutionary strata on the human X chromosome in the absence of gametologous Y-linked sequences. Genome Biol Evol 5:1863–1871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parada GE, Munita R, Cerda CA, Gysling K (2014) A comprehensive survey of non-canonical splice sites in the human transcriptome. Nucleic Acids Res 42:10564–10578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peredo CM, Pyenson ND, Boersma AT (2017) Decoupling tooth loss from the evolution of baleen in whales. Front Mar Sci 4:67

    Google Scholar 

  • Peredo CM, Peredo JS, Pyenson ND (2018) Convergence on dental simplification in the evolution of whales. Paleobiology 44:434–443

    Google Scholar 

  • Plön S (2004) The status and natural history of pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales off Southern Africa. Rhodes University, Grahamstown, South Africa

  • Raudsepp T, Chowdhary BP (2015) The eutherian pseudoautosomal region. Cytogenet Genome Res 147:81–94

    PubMed  Google Scholar 

  • Romero P, Obradovic Z, Dunker AK (1997) Sequence data analysis for long disordered regions prediction in the calcineurin family. Genome Inform Ser Workshop Genome Inform 8:110–124

    CAS  PubMed  Google Scholar 

  • Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    CAS  PubMed  Google Scholar 

  • Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP et al (2005) The DNA sequence of the human X chromosome. Nature 434:325–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sander PM (2000) Prismless enamel in amniotes: terminology, function, and evolution. In: Teaford MF, Smith MM, Ferguson MW (eds) Development, function, and evolution of teeth. Cambridge University Press, Cambridge, pp 92–106

    Google Scholar 

  • Sibley CR, Blazquez L, Ule J (2016) Lessons from non-canonical splicing. Nat Rev Genet 17:407–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simmer JP, Richardson AS, Hu YY, Smith CE, Ching-Chun HuJ (2012) A post-classical theory of enamel biomineralization... and why we need one. Int J Oral Sci 4:129–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837

    CAS  PubMed  Google Scholar 

  • Smith CE, Hu Y, Hu JC, Simmer JP (2016) Ultrastructure of early amelogenesis in wild-type, Amelx-/-, and Enam-/- mice: enamel ribbon initiation on dentin mineral and ribbon orientation by ameloblasts. Mol Genet Genomic Med 4:662–683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, Mighell AJ (2017) Amelogenesis imperfecta; genes, proteins, and pathways. Front Physiol 8:435

    PubMed  PubMed Central  Google Scholar 

  • Springer MS, Starrett J, Morin PA, Lanzetti A, Hayashi C, Gatesy J (2016) Inactivation of C4orf26 in toothless placental mammals. Mol Phylogenet Evol 95:34–45

    CAS  PubMed  Google Scholar 

  • Thewissen JGM, Sensor JD, Clementz MT, Bajpai S (2011) Evolution of dental wear and diet during the origin of whales. Paleobiology 37:655–669

    Google Scholar 

  • Thewissen JG, Hieronymus TL, George JC, Suydam R, Stimmelmayr R, McBurney D (2017) Evolutionary aspects of the development of teeth and baleen in the bowhead whale. J Anat 230:549–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toyosawa S, O'hUigin C, Figueroa F, Tichy H, Klein J, (1998) Identification and characterization of amelogenin genes in monotremes, reptiles, and amphibians. Proc Natl Acad Sci U S A 95:13056–13061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uhen MD (2018) Dental morphology. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of marine mammals. Academic Press, London, pp 246–250

    Google Scholar 

  • Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12

    CAS  PubMed  Google Scholar 

  • Werth A (2000) Feeding in marine mammals. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, San Diego, pp 487–526

    Google Scholar 

  • Werth AJ (2004) Functional morphology of the sperm whale (Physeter macrocephalus) tongue, with reference to suction feeding. Aquat Mamm 30:405–418

    Google Scholar 

  • Werth AJ (2006) Mandibular and dental variation and the evolution of suction feeding in Odontoceti. J Mammal 87:579–588

    Google Scholar 

  • Werth AJ, Loch C, Fordyce RE (2019) Enamel microstructure in Cetacea: a case study in evolutionary loss of complexity. J Mammal Evol. https://doi.org/10.1007/s10914-019-09484-7

    Article  Google Scholar 

  • Wilson MA, Makova KD (2009) Evolution and survival on eutherian sex chromosomes. PLoS Genet 5:e1000568

    PubMed  PubMed Central  Google Scholar 

  • Wyckoff GJ, Li J, Wu CI (2002) Molecular evolution of functional genes on the mammalian Y chromosome. Mol Biol Evol 19:1633–1636

    CAS  PubMed  Google Scholar 

  • Yuan ZA, Collier PM, Rosenbloom J, Gibson CW (1996) Analysis of amelogenin mRNA during bovine tooth development. Arch Oral Biol 41:205–213

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to late Dr. Seiji Ohsumi, a former director of the Institute of Cetacean Research, for providing us with precious samples. We also appreciate Mr. Ken Nakamatsu at the Atmosphere and Ocean Research Institute, the University of Tokyo, for providing us with samples, and Prof. Kenneth M. Weiss and Dr. Anne V. Buchanan at Penn State University for critical reading of this manuscript. K. K. is truly grateful to Prof. Joan T. Richtsmeier at Penn State University for encouragement. This work was made possible by the financial support from the Department of Anthropology at Penn State to K. K., the National Institute of Health (P01HD078233 and R01DE027677) to Prof. Joan T. Richtsmeier, and the JSPS (KAKENHI Grant Number JP12671789) and Nippon Dental University (Research Promotion Grant Number N-17006) to M. I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Kawasaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Animal Participants

All applicable international, national, and/or institutional guidelines for the use of animals were followed.

Additional information

Handling editor: Willie Swanson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2070 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, K., Mikami, M., Goto, M. et al. The Evolution of Unusually Small Amelogenin Genes in Cetaceans; Pseudogenization, X–Y Gene Conversion, and Feeding Strategy. J Mol Evol 88, 122–135 (2020). https://doi.org/10.1007/s00239-019-09917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-019-09917-0

Keywords

Navigation