Skip to main content
Log in

Assessment of Metal(loid) Contamination and Genotoxic Potential of Agricultural Soils

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Soil, a connecting link between biotic and abiotic components of terrestrial ecosystem, receives different kinds of pollutants through various point and nonpoint sources. Among different sources of soil pollution, contaminated irrigation water is one of the most prominent sources affecting soils throughout the globe. The irrigation water (both surface and groundwater) is increasingly getting polluted with contaminants such as metal(loid)s due to various anthropogenic activities. The present study was conducted to analyze metal(loid) contents in agricultural soil samples (N = 24) collected from fields along the banks of rivers Beas and Sutlej flowing through Punjab state of India, using wavelength-dispersive X-ray fluorescence (WDXRF) spectroscopy. The soil samples were also analyzed for their genotoxic potential using Allium cepa root chromosomal aberration assay. The rivers Beas and Sutlej are contaminated with municipal and industrial effluents in different parts of Punjab. The soil samples analyzed were found to have higher contents of arsenic, cobalt and chromium in comparison with the reference values given by various international agencies. Pollution assessment using different indices like index of geo-accumulation, enrichment factor and contamination factor revealed that the soil samples were highly polluted with cobalt and arsenic. The Allium cepa assay revealed that maximum genotoxicity was found in soil samples having higher contents of As and Co. Pearson’s correlation analysis revealed strong positive correlation between the different metal(loid)s which indicated common sources of these metal(loid)s. Therefore, efforts must be taken to reduce the levels of these metal(loid)s in these agricultural soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad A, Toor RH, Aftab S, Shakoori AR (2014) Anti-proliferative and genotoxic effect of Arsenic and Lead on human brain cancer cell line. Pakistan J Zool 46(4):1069–1076

    CAS  Google Scholar 

  • Allin CW (ed) (2010) Encyclopedia of global resources: South Korea-Zirconium; Appendixes; Indexes, vol 4. Salem Press Inc

  • Awashthi SK (2000) Prevention of Food Adulteration Act no 37 of 1954. Central and State Rules as Amended for 1999. Ashoka Law House, New Delhi

  • Ayres RU, Ayres L (1999) Accounting for resources, 2: the life cycle of materials. Edward Elgar Publishing

  • Bhatti SS, Sambyal V, Singh J, Nagpal AK (2017) Analysis of soil characteristics of different land uses and metal bioaccumulation in wheat grown around rivers: possible human health risk assessment. Environ Dev Sustain 19(2):571–588

    Article  Google Scholar 

  • Bhatti SS, Kumar V, Kumar A, Gouzos J, Kirby J, Singh J, Sambyal V, Nagpal AK (2018) Potential ecological risks of metal(loid)s in riverine floodplain soils. Ecotoxicol Environ Saf 164:722–731

    Article  CAS  Google Scholar 

  • Bhatti SS, Kumar V, Kumar A, Kirby JK, Gouzos J, Correll R, Singh J, Sambyal V, Nagpal AK (2020) Potential carcinogenic and non-carcinogenic health hazards of metal(loid)s in food grains. Environ Sci Pollut Res 27:17032–17042

    Article  CAS  Google Scholar 

  • Bielecka K, Kurtek W, Banas D, Kubala-Kukus A, Braziewicza J, Majewska U, Pajek M, Wudarczyk-Mo¢ko J, Stabrawa I (2014) X-ray diffraction and elemental analysis of medical and environmental samples. Acta Phys Pol A 125:911–918

    Article  CAS  Google Scholar 

  • Bonnet M, Camares O, Veisseire P (2000) Effect of zinc and influence of Acremonium loliion growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J Exp Bot 51:945–953

    CAS  Google Scholar 

  • C.So.Q.Gs. (2007) Canadian Soil quality guidelines for the protection of environmental and human health, summary tables, chap 7

  • Cabrera GL, Rodriguez DMG (1999) Genotoxicity of soil from farmland irrigated with wastewater using three plant bioassays. Mut Res 426:211–214

    Article  CAS  Google Scholar 

  • Campbell LM, Fisk AT, Wang X, Kock G, Muir DCG (2005) Evidence for biomagnification of rubidium in freshwater and marine food webs. Can J Fish Aquat Sci 62:1161–1167

    Article  CAS  Google Scholar 

  • Chandrasekaran A, Ravisankar R, Harikrishnan N, Satapathy KK, Prasad MVR, Kanagasabapathy KV (2015) Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India-Spectroscopical approach. Spectrochim Acta A Mol Biomol Spectrosc 137:589–600

    Article  CAS  Google Scholar 

  • China National Environmental Monitoring Center (CNEMC) (1990) The backgrounds of soil environment in China. China Environmental Science Press, Beijing (in Chinese)

    Google Scholar 

  • Cobela-Garcia A, Prego R (2003) Heavy metal sedimentary record in a Glacian Ria (NW Spain): background values and recent contamination. Mar Pollut Bull 46:1253–1262

    Article  CAS  Google Scholar 

  • Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol/Hematol 42: 35–56

  • Faure G, Mensing TM (2005) Isotopes: principles and applications. Wiley, Hoboken

    Google Scholar 

  • Funtua (1996) Application of the transmission emission method in EDXRF for the determination of trace element in geological and biological materials. J Trace Microprobe Tech 17:293–297

    Google Scholar 

  • Gastaldo J, Viau M, Bencokova Z, Joubert A, Charvet A, Balosso J, Foray N (2007) Lead contamination results in late and slowly repairable DNA double-strand breaks and impacts upon the ATM-dependent signaling pathways. Toxicol Lett 173:201–214

    Article  CAS  Google Scholar 

  • Goldhaber MB, Lee RC, Hatch JR, Pashin JC, Treworgy J (2003) Role of large scale fluid-flow in subsurface arsenic enrichment. Arsenic in ground water. Springer, Bostn, MA, pp 127–164

    Chapter  Google Scholar 

  • Gowd SS, Govil PK (2008) Distribution of heavy metals in surface water of Ranipet industrial area in Tamil Nadu. India Environ Monit Assess 136:197–207

    Article  CAS  Google Scholar 

  • Gowd SS, Reddy MR, Govil PK (2010) Assessment of heavy metal contamination in soil at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh. India J Hazard Mater 174:113–121

    Article  CAS  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Hammann A, Ybañez LM, Isla MI, Hilal M (2020) Potential agricultural use of a sub product (olive cake) from olive oil industries composting with soil. J Pharm Pharmacogn Res 8:43–52

    CAS  Google Scholar 

  • Hammer Ø, Harper DA, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9

    Google Scholar 

  • Heggtveit HA, Grice HC, Wiberg GS (1970) Cobalt cardiomyopathy. Experimental basis for the human lesion. Path Microbiol 35:110–113

    CAS  Google Scholar 

  • Hu J, Lin B, Yuan M, Lao Z, Wu K, Zeng Y, Liang Z, Li H, Li Y, Zhu D, Liu J (2019) Trace metal pollution and ecological risk assessment in agricultural soil in Dexing Pb/Zn mining area. China Environ Geochem Health 41(2):967–980

    Article  CAS  Google Scholar 

  • Ippolito J (2006) Biosolids affect soil barium in a dryland wheat agro-ecosystem. J Environ Qual 35:23–33

    Article  CAS  Google Scholar 

  • Jabeen S, Shah MT, Khan S, Hayat MQ (2010) Determination of major and trace elements in ten important folk therapeutic plants of Haripur basin. Pakistan J Med Plant Res 4:559–566

    CAS  Google Scholar 

  • Juarez-Santacruz L, Garcia-Nieto E, Costilla-Salazar R, Garcia-Gallegos E, Coronel-Olivares C, Gomez-Camarillo M, Gaytan-Oyarzun J (2013) Assessment of the genotoxic potential of sediments contaminated with POPs and agricultural soils using Vicia faba micronucleus assay. Soil Sediment Contam 22:288–300

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2004) Soil-plant transfer of heavy metals-an environmental issue. Geoderma 122:143–149

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1999) Biogeochemistry 504 of trace elements, 2nd edn. PWN, Warsaw (In Polish)

    Google Scholar 

  • Khan A, Khan S, Khan MA, Qamar Z, Waqas M (2015) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22(18):13772–13799

    Article  CAS  Google Scholar 

  • Kong MS, Ma TH (1999) Genotoxicity of contaminated soil and shallow well water detected by plant bioassays. Mutat Res 426(2):221–226

    Article  CAS  Google Scholar 

  • Kupper H, Kupper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58:125–133

    Article  Google Scholar 

  • Larocque ACL, Rasmuseen PE (1998) An overview of trace metals in the environment: mobilization to remediation. Environ Geol 33:85–91

    Article  CAS  Google Scholar 

  • Levan A (1938) The effect of colchicine on root mitosis in Allium. Hereditas 24:471–486

    Article  Google Scholar 

  • Loska K, Wiechuła D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30(2):159–165

    Article  CAS  Google Scholar 

  • Lu X, Wanga L, Li LY, Lei K, Huang L, Kang D (2010) Multivariate statistical analysis of heavy metals in street dust of Baoji. NW China J Haz Mater 173:744–749

    Article  CAS  Google Scholar 

  • Ma Y, Hooda PS (2010) Chromium, nickel and cobalt. Trace Elem Soils 13:461–480

    Article  Google Scholar 

  • Ma L, Yang Z, Li L, Wang L (2016) Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in Southern China. Environ Sci Pollut Res 23(17):17058–17066

    Article  CAS  Google Scholar 

  • Machender G, Dhakate R, Prasanna L, Govil PK (2011) Assessment of heavy metal contamination in soils around Balanagar industrial area, Hyderabaad. India Environ Earth Sci 63:945–953

    Article  CAS  Google Scholar 

  • Maksimovic I, Kastori R, Putnik-Delic M, Borišev M (2014) Effect of yttrium on photosynthesis and water relations in young maize plants. J Rare Earths 32(4):372–378

    Article  CAS  Google Scholar 

  • Marques CC, Nunes AC, Pinheiro T, Lopes PA, Santos MC, Viegas CAM, Ramalhinho MG, Mathias ML (2006) An assessment of time dependent effects of lead exposure in Algerian mice (Mus spretus) using different methodological approaches. Biol Trace Elem Res 109:75–89

    Article  CAS  Google Scholar 

  • Menzie C, Southworth B, Stephenson G, Feisthauer N (2008) The importance of understanding the chemical form of a metal in the environment: the case of barium sulfate (barite). Hum Ecol Risk Assess 14:974–991

    Article  CAS  Google Scholar 

  • Morinville A, Maysinger D, Shaver A (1998) From Vanadis to Atropos: vanadium compounds as pharmacological tools in cell death signaling. Trends Pharmacol Sci 19:452–460

    Article  CAS  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A, Singh RB, Mishra S (2010) Effect of toxic metals on human health. Open Nutraceuticals J 3:94–99

    CAS  Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2:108–118

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216

    Article  CAS  Google Scholar 

  • Rigo AA, Cezaro AMD, Muenchen DK, Martinazzo J, Manzoli A, Steffens J, Steffens C (2020) Heavy metals detection in river water with cantilever nanobiosensor. J Environ Sci Health B 55(3):239–249

    Article  CAS  Google Scholar 

  • Ruggeberg A, Fietzke J, Liebetrau V, Eisenhauer A, Dullo W, Freiwald A (2008) Stable strontium isotopes (d88Sr/86Sr) in cold-water corals-a new proxyfor reconstruction of intermediate ocean water temperatures. Earth Planet Sci Lett 269:570–575

    Article  CAS  Google Scholar 

  • Sax K, Sax HJ (1968) Possible hazards of some food additives, beverages and insecticides. Idengakuzasshi

  • Shahid M, Ferrand E, Schreck E, Dumat C (2013) Behavior and impact of zirconium in the soil-plant system: plant uptake and phytotoxicity. In: Reviews of environmental contamination and toxicology, vol 221. Springer, New York, NY, pp 107–127

  • Shalan MG, Mostafa MS, Hassouna MM, Hassab El-Nabi SE, El-Rafaie A (2005) Amelioration of lead toxicity on rat liver with vitamin C and silymarin supplements. Toxicology 206:1–15

    Article  CAS  Google Scholar 

  • Sharma S, Nagpal AK, Kaur I (2019) Appraisal of heavy metal contents in groundwater and associated health hazards posed to human population of Ropar wetland, Punjab, India and its environs. Chemosphere 227:179–190

    Article  CAS  Google Scholar 

  • Singh N, Kaur M, Katnoria JK (2017) Spatial and temporal heavy metal distribution and surface water characterization of Kanjli Wetland (a Ramsar site), India using different indices. Bull Environ Contam Toxicol 99(6):735–742

    Article  CAS  Google Scholar 

  • Soodan RK, Katnoria JK, Nagpal A (2014a) Allium cepa root chromosomal aberration assay: an efficient test system for evaluating genotoxicity of agricultural soil. Int J Sci Res 3:245–250

    Google Scholar 

  • Soodan RK, Pakade YB, Nagpal A, Katnoria JK (2014b) Analytical techniques for estimation of heavy metals in soil ecosystem: a tabulated review. Talanta 125:405–410

    Article  CAS  Google Scholar 

  • Souza TS, Hencklein FA, Angelis DF, Fontanetti CS (2013) Clastogenicity of landfarming soil treated with sugar cane vinasse. Environ Monit Assess 185:1627–1636

    Article  CAS  Google Scholar 

  • Stern BR, Solioz M, Krewski D, Aggett P, Tar-Ching AW, Baker S, Crump K, Dourson M, Haber L, Hertzberg R, Keen C, Meek B, Rudenko L, Schoeny R, Slob W, Starr T (2007) Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. J Toxicol Environ Health 10:157–222

    Article  CAS  Google Scholar 

  • Stiborova M, Ditrichova M, Brezinova A (1988) Mechanism of action of Cu+2, Co+2 and Zn+2 on ribulose 1–5 biphosphate carboxylase from barley (Hordeum vulgare L.). Photosynthetica 22:161–167

    CAS  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu. Hawaii Environ Geol 39:611–627

    Article  CAS  Google Scholar 

  • Taylor SR, Mclennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Tsonko T, Fernando JCL (2012) Zinc in plants—an overview. Emir J Food Agric 24(4):322–333

    Google Scholar 

  • Vachirapatama N, Dicinoski G, Townsend AT, Haddad PR (2002) Determination of vanadium as PAR-hydrogen peroxide complex in fertilisers by ion-interaction RP-HPLC. J Chromatogr A 956:221–227

    Article  CAS  Google Scholar 

  • Wang W, Zhou MF, Yan DP, Li L, Malpas J (2013) Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen. South China Precambrian Res 235:1–19

    Article  CAS  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  CAS  Google Scholar 

  • Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the United States: Occurence and geochemistry. Groundwater 38(4):589

    Article  CAS  Google Scholar 

  • Yusuf AZ, Halima SA, Zakir A, Abdullahi M, Sani K (2014) X-ray fluorescence: an accessible and effective technique for evaluation of hazards and economic potential associated with important mineral deposits in Nigeria. J Geol Min Res 6:13–17

    Article  CAS  Google Scholar 

  • Zhang D, Wang XM, Li TF, Luo XQ, Wu W, Nori F, You JQ (2015) Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. NPJ Quant Inform 1(1): 1–6

  • Zhang H, Mao Z, Huang K, Wang X, Cheng L, Zeng L, Zhou Y, Jing T (2019) Multiple exposure pathways and health risk assessment of heavy metal (loid) s for children living in fourth-tier cities in Hubei Province. Environ Int 129:517–524

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge University Grants Commission, New Delhi, for financial assistance under DRS and BSR programs; and Rajiv Gandhi National Fellowship; and Head, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar for laboratory facilities.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vaneet Kumar or Avinash Kaur Nagpal.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Vaneet Kumar and Sandip Singh Bhatti have equal first authorship.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Bhatti, S.S. & Nagpal, A.K. Assessment of Metal(loid) Contamination and Genotoxic Potential of Agricultural Soils. Arch Environ Contam Toxicol 81, 272–284 (2021). https://doi.org/10.1007/s00244-021-00874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-021-00874-8

Navigation