Skip to main content
Log in

Identification of Bufadienolides from the Boreal Toad, Anaxyrus boreas, Active Against a Fungal Pathogen

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Amphibian granular glands provide a wide range of compounds on the skin that defend against pathogens and predators. We identified three bufadienolides—the steroid-like compounds arenobufagin, gamabufotalin, and telocinobufagin—from the boreal toad, Anaxyrus boreas, through liquid chromatography mass spectrometry (LC/MS). Compounds were detected both after inducing skin gland secretions and in constitutive mucosal rinses from toads. We described the antimicrobial properties of each bufadienolide against Batrachochytrium dendrobatidis (Bd), an amphibian fungal pathogen linked with boreal toad population declines. All three bufadienolides were found to inhibit Bd growth at similar levels. The maximum Bd inhibition produced by arenobufagin, gamabufotalin, and telocinobufagin were approximately 50%, in contrast to the complete Bd inhibition shown by antimicrobial skin peptides produced by some amphibian species. In addition, skin mucus samples significantly reduced Bd viability, and bufadienolides were detected in 15 of 62 samples. Bufadienolides also appeared to enhance growth of the anti-Bd bacterium Janthinobacterium lividum, and thus may be involved in regulation of the skin microbiome. Here, we localized skin bacteria within the mucus layer and granular glands of toads with fluorescent in situ hybridization. Overall, our results suggest that bufadienolides can function in antifungal defense on amphibian skin and their production is a potentially convergent trait similar to antimicrobial peptide defenses found on the skin of other species. Further studies investigating bufadienolide expression across toad populations, their regulation, and interactions with other components of the skin mucosome will contribute to understanding the complexities of amphibian immune defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KP, Harris RN (2013) Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16:807–820

    Article  PubMed  Google Scholar 

  2. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC, Lam BA, Woodhams DC, Briggs CJ, Vredenburg VT, Minbiole KP (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824. doi:10.1038/ismej.2009.27

    Article  CAS  PubMed  Google Scholar 

  3. Ramsey JP, Reinert LK, Harper LK, Woodhams DC, Rollins-Smith LA (2010) Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the south African clawed frog, Xenopus laevis. Infect. Immun. 78:3981–3992. doi:10.1128/IAI.00402-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woodhams D, Rollins-Smith L, Alford R, Simon M, Harris R (2007) Innate immune defenses of amphibian skin: antimicrobial peptides and more. Anim. Conserv. 10:425–428

    Article  Google Scholar 

  5. Rollins-Smith LA, Doersam JK, Longcore JE, Taylor SK, Shamblin JC, Carey C, Zasloff MA (2002) Antimicrobial peptide defenses against pathogens associated with global amphibian declines. Developmental & Comparative Immunology 26:63–72

    Article  CAS  Google Scholar 

  6. Daly JW, Myers CW, Whittaker N (1987) Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon 25:1023–1095

    Article  CAS  PubMed  Google Scholar 

  7. Clarke BT (1997) The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol. Rev. 72:365–379. doi:10.1017/S0006323197005045

    Article  CAS  PubMed  Google Scholar 

  8. Rd T, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. A Physiol. 111:1–29

    Google Scholar 

  9. Jared C, Antoniazzi MM, Jordao AE, Silva JRM, Greven H, Rodrigues MT (2009) Parotoid macroglands in toad (Rhinella jimi): their structure and functioning in passive defence. Toxicon 54:197–207

    Article  CAS  PubMed  Google Scholar 

  10. Krenn L, Kopp B (1998) Bufadienolides from animal and plant sources. Phytochemistry 48:1–29

    Article  CAS  PubMed  Google Scholar 

  11. Cunha Filho GA, Schwartz CA, Resck IS, Murta MM, Lemos SS, Castro MS, Kyaw C, Pires OR, Leite JRS, Bloch C (2005) Antimicrobial activity of the bufadienolides marinobufagin and telocinobufagin isolated as major components from skin secretion of the toad Bufo rubescens. Toxicon 45:777–782

    Article  CAS  PubMed  Google Scholar 

  12. Woodhams DC, Voyles J, Lips KR, Carey C, Rollins-Smith LA (2006) Predicted disease susceptibility in a Panamanian amphibian assemblage based on skin peptide defenses. J. Wildl. Dis. 42:207–218. doi:10.7589/0090-3558-42.2.207

    Article  CAS  PubMed  Google Scholar 

  13. Garg AD, Hippargi RV, Gandhare AN (2008) Toad skin-secretions: potent source of pharmacologically and therapeutically significant compounds. The Internet Journal of Pharmacology 5:17

    Google Scholar 

  14. Noble GK (1931) The biology of the amphibia. McGraw-Hill, New York

  15. Preusser HJ, Habermehl G, Sablofski M, Schmall-Haury D (1975) Antimicrobial activity of alkaloids from amphibian venoms and effects on the ultrastructure of yeast cells. Toxicon 13:285–289

    Article  CAS  PubMed  Google Scholar 

  16. Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and central America. Proc. Natl. Acad. Sci. U. S. A. 95:9031–9036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium Dendrobatidis gen. et sp. nov., a Chytrid pathogenic to amphibians. Mycologia 91:219. doi:10.2307/3761366

    Article  Google Scholar 

  18. Fisher MC, Garner TW, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63:291–310. doi:10.1146/annurev.micro.091208.073435

    Article  CAS  PubMed  Google Scholar 

  19. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  CAS  PubMed  Google Scholar 

  20. Van Rooij P, Martel A, Haesebrouck F, Pasmans F (2015) Amphibian chytridiomycosis: a review with focus on fungus-host interactions. Vet. Res. 46:137. doi:10.1186/s13567-015-0266-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hanlon SM, Lynch KJ, Kerby J, Parris MJ (2015) Batrachochytrium dendrobatidis exposure effects on foraging efficiencies and body size in anuran tadpoles. Dis. Aquat. Org. 112:237–242. doi:10.3354/dao02810

    Article  PubMed  Google Scholar 

  22. Campbell CR, Voyles J, Cook DI, Dinudom A (2012) Frog skin epithelium: electrolyte transport and chytridiomycosis. Int. J. Biochem. Cell Biol. 44:431–434. doi:10.1016/j.biocel.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  23. Searle CL, Gervasi SS, Hua J, Hammond JI, Relyea RA, Olson DH, Blaustein AR (2011) Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conserv. Biol. 25:965–974. doi:10.1111/j.1523-1739.2011.01708.x

    Article  CAS  PubMed  Google Scholar 

  24. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues AS, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi:10.1126/science.1103538

    Article  CAS  PubMed  Google Scholar 

  25. IUCN (2015) The IUCN red list of threatened species. http://www.iucnredlist.org. Accessed 27 Nov 2015

  26. Pilliod DS, Muths E, Scherer RD, Bartelt PE, Corn PS, Hossack BR, Lambert BA, McCaffery R, Gaughan C (2010) Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads. Conserv. Biol. 24:1259–1267. doi:10.1111/j.1523-1739.2010.01506.x

    Article  PubMed  Google Scholar 

  27. Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134

    Article  Google Scholar 

  28. Weldon C, du Preez LH, Hyatt AD, Muller R, Spears R (2004) Origin of the amphibian chytrid fungus. Emerg. Infect. Dis. 10:2100–2105. doi:10.3201/eid1012.030804

    Article  PubMed  PubMed Central  Google Scholar 

  29. Daszak P, Strieby A, Cunningham AA, Longcore J, Brown C, Porter D (2004) Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol. J. 14:201–207

    Google Scholar 

  30. Peterson AC, McKenzie VJ (2014) Investigating differences across host species and scales to explain the distribution of the amphibian pathogen Batrachochytrium dendrobatidis. PLoS One 9:e107441. doi:10.1371/journal.pone.0107441

    Article  PubMed  PubMed Central  Google Scholar 

  31. La Marca E, Lips KR, Lötters S, Puschendorf R, Ibáñez R, Rueda-Almonacid JV, Schulte R, Marty C, Castro F, Manzanilla-Puppo J (2005) Catastrophic population declines and extinctions in Neotropical harlequin frogs (Bufonidae: Atelopus) 1. Biotropica 37:190–201

    Article  Google Scholar 

  32. Ellison AR, Savage AE, DiRenzo GV, Langhammer P, Lips KR, Zamudio KR (2014) Fighting a losing battle: vigorous immune response countered by pathogen suppression of host defenses in the chytridiomycosis-susceptible frog Atelopus zeteki. G3 (Bethesda) 4:1275–1289. doi:10.1534/g3.114.010744

    Article  CAS  Google Scholar 

  33. Hunter DA, Speare R, Marantelli G, Mendez D, Pietsch R, Osborne W (2010) Presence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in threatened corroboree frog populations in the Australian alps. Dis. Aquat. Org. 92:209–216

    Article  PubMed  Google Scholar 

  34. James TY, Toledo LF, Rodder D, da Silva LD, Belasen AM, Betancourt-Roman CM, Jenkinson TS, Soto-Azat C, Lambertini C, Longo AV, Ruggeri J, Collins JP, Burrowes PA, Lips KR, Zamudio KR, Longcore JE (2015) Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: lessons from the first 15 years of amphibian chytridiomycosis research. Ecology and Evolution 5:4079–4097. doi:10.1002/ece3.1672

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anderson R, May R, Joysey K, Mollison D, Conway G, Cartwell R, Thompson H, Dixon B (1986) The invasion, persistence and spread of infectious diseases within animal and plant communities [and discussion]. Philosophical Transactions of the Royal Society B: Biological Sciences 314:533–570

    Article  CAS  Google Scholar 

  36. Murphy PJ, St-Hilaire S, Bruer S, Corn PS, Peterson CR (2009) Distribution and pathogenicity of Batrachochytrium dendrobatidis in boreal toads from the grand Teton area of western Wyoming. EcoHealth 6:109–120. doi:10.1007/s10393-009-0230-4

    Article  PubMed  Google Scholar 

  37. Goebel AM, Ranker TA, Corn PS, Olmstead RG (2009) Mitochondrial DNA evolution in the Anaxyrus boreas species group. Mol. Phylogenet. Evol. 50:209–225. doi:10.1016/j.ympev.2008.06.019

    Article  CAS  PubMed  Google Scholar 

  38. Rollins-Smith LA, Reinert LK, O’Leary CJ, Houston LE, Woodhams DC (2005) Antimicrobial peptide defenses in amphibian skin. Integr. Comp. Biol. 45:137–142

    Article  CAS  PubMed  Google Scholar 

  39. Umile TP, McLaughlin PJ, Johnson KR, Honarvar S, Blackman AL, Burzynski EA, Davis RW, Teotonio TL, Hearn GW, Hughey CA, Lagalante AF, Minbiole KPC (2014) Nonlethal amphibian skin swabbing of cutaneous natural products for HPLC fingerprinting. Anal. Methods 6:3277–3284. doi:10.1039/c4ay00566j

    Article  CAS  Google Scholar 

  40. Lowrey L, Woodhams DC, Tacchi L, Salinas I (2015) Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl. Environ. Microbiol. 81:6915–6925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Woodhams DC, Brandt H, Baumgartner S, Kielgast J, Kupfer E, Tobler U, Davis LR, Schmidt BR, Bel C, Hodel S, Knight R, McKenzie V (2014) Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS One 9:e96375. doi:10.1371/journal.pone.0096375

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pask JD, Woodhams DC, Rollins-Smith LA (2012) The ebb and flow of antimicrobial skin peptides defends northern leopard frogs (Rana pipiens) against chytridiomycosis. Glob. Chang. Biol. 18:1231–1238

    Article  Google Scholar 

  43. Ogata K, Nishikawa H, Ohsugi M (1969) A yeast capable of utilizing methanol. Agric. Biol. Chem. 33:1519–1520

    Article  CAS  Google Scholar 

  44. Brunetti AE, Merib J, Carasek E, Caramão EB, Barbará J, Zini CA, Faivovich J (2015) Frog volatile compounds: application of in vivo SPME for the characterization of the odorous secretions from two species of hypsiboas treefrogs. J. Chem. Ecol. 41:360–372

    Article  CAS  PubMed  Google Scholar 

  45. Grice EA, Segre JA (2011) The skin microbiome. Nat. Rev. Microbiol. 9:244–253. doi:10.1038/nrmicro2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bataille A, Lee-Cruz L, Tripathi B, Kim H, Waldman B (2016) Microbiome variation across amphibian skin regions: implications for chytridiomycosis mitigation efforts. Microb. Ecol. 71:221–232. doi:10.1007/s00248-015-0653-0

    Article  PubMed  Google Scholar 

  47. Hayes RA, Piggott AM, Dalle K, Capon RJ (2009) Microbial biotransformation as a source of chemical diversity in cane toad steroid toxins. Bioorg. Med. Chem. Lett. 19:1790–1792

    Article  CAS  PubMed  Google Scholar 

  48. Rollins-Smith LA, Conlon JM (2005) Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Developmental & Comparative Immunology 29:589–598. doi:10.1016/j.dci.2004.11.004

    Article  CAS  Google Scholar 

  49. Conlon JM (2011) The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell Tissue Res. 343:201–212. doi:10.1007/s00441-010-1014-4

    Article  CAS  PubMed  Google Scholar 

  50. Pédron T, Mulet C, Dauga C, Frangeul L, Chervaux C, Grompone G, Sansonetti PJ (2012) A crypt-specific core microbiota resides in the mouse colon. MBio 3:e00116–e00112

    Article  PubMed  PubMed Central  Google Scholar 

  51. Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol. 6:468–472

    Article  CAS  PubMed  Google Scholar 

  52. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals (Basel) 6:1543–1575. doi:10.3390/ph6121543

    Article  Google Scholar 

  53. Brogden NK, Brogden KA (2011) Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int. J. Antimicrob. Agents 38:217–225

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Steinstraesser L, Kraneburg U, Jacobsen F, Al-Benna S (2011) Host defense peptides and their antimicrobial-immunomodulatory duality. Immunobiology 216:322–333

    Article  CAS  PubMed  Google Scholar 

  55. Yamahara J, Tanaka S, Matsuda H, Sawada T, Fujimura H (1986) The mode of cardiac action of cardiotonic steroids isolated from toad cake in perfused working guinea-pig heart and effect of cinobufagin on experimental heart failure. Nihon Yakurigaku Zasshi 88:413–423

    Article  CAS  PubMed  Google Scholar 

  56. Zhang DM, Liu JS, Deng LJ, Chen MF, Yiu A, Cao HH, Tian HY, Fung KP, Kurihara H, Pan JX, Ye WC (2013) Arenobufagin, a natural bufadienolide from toad venom, induces apoptosis and autophagy in human hepatocellular carcinoma cells through inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis 34:1331–1342. doi:10.1093/carcin/bgt060

    Article  CAS  PubMed  Google Scholar 

  57. Nogawa T, Kamano Y, Yamashita A, Pettit GR (2001) Isolation and structure of five new cancer cell growth inhibitory bufadienolides from the Chinese traditional drug Ch’an Su. J. Nat. Prod. 64:1148–1152

    Article  CAS  PubMed  Google Scholar 

  58. Matsukawa M, Akizawa T, Ohigashi M, Morris JF, Butler Jr VP, Yoshioka M (1997) A novel bufadienolide, marinosin, in the skin of the giant toad, Bufo marinus. Chemical and Pharmaceutical Bulletin (Tokyo) 45:249–254

    Article  CAS  Google Scholar 

  59. Hirai Y, Morishita S, Ito C, Sakanashi M (1992) Effects of bufadienolides and some kinds of cardiotonics on guinea-pig hearts. Folia Pharmacologica Japonica 100:127–135

    Article  CAS  PubMed  Google Scholar 

  60. Briggs CJ, Knapp RA, Vredenburg VT (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc. Natl. Acad. Sci. U. S. A. 107:9695–9700. doi:10.1073/pnas.0912886107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Holden WM, Reinert LK, Hanlon SM, Parris MJ, Rollins-Smith LA (2015) Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Developmental & Comparative Immunology 48:65–75. doi:10.1016/j.dci.2014.09.003

    Article  CAS  Google Scholar 

  62. Woodhams DC, Bell SC, Bigler L, Caprioli RM, Chaurand P, Lam BA, Reinert LK, Stalder U, Vazquez VM, Schliep K, Hertz A, Rollins-Smith LA (2016) Life history linked to immune investment in developing amphibians. Conservation Physiology 4:cow025. doi:10.1093/conphys/cow025

    Article  PubMed  PubMed Central  Google Scholar 

  63. Benard MF, Fordyce JA (2003) Are induced defenses costly? Consequences of predator-induced defenses in western toads, Bufo boreas. Ecology 84:68–78

    Article  Google Scholar 

  64. Garner T, Garcia G, Carroll B, Fisher M (2009) Using itraconazole to clear Batrachochytrium dendrobatidis infection, and subsequent depigmentation of Alytes muletensis tadpoles. Dis. Aquat. Org. 83:257–260

    Article  CAS  PubMed  Google Scholar 

  65. Woodhams DC, Geiger CC, Reinert LK, Rollins-Smith LA, Lam B, Harris RN, Briggs CJ, Vredenburg VT, Voyles J (2012) Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Dis. Aquat. Org. 98:11–25. doi:10.3354/dao02429

    Article  CAS  PubMed  Google Scholar 

  66. Berger L, Speare R, Pessier A, Voyles J, Skerratt LF (2010) Treatment of chytridiomycosis requires urgent clinical trials. Dis. Aquat. Org. 92:165–174. doi:10.3354/dao02238

    Article  PubMed  Google Scholar 

  67. Woodhams DC, Alford RA, Marantelli G (2003) Emerging disease of amphibians cured by elevated body temperature. Dis. Aquat. Org. 55:65–67. doi:10.3354/dao055065

    Article  PubMed  Google Scholar 

  68. Woodhams D, Ardipradja K, Alford R, Marantelli G, Reinert L, Rollins-Smith L (2007) Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim. Conserv. 10:409–417

    Article  Google Scholar 

  69. White A (2006) A trial using salt to protect green and golden bell frogs from chytrid infection. HERPETOFAUNA-SYDNEY- 36: 93.

  70. Woodhams DC, Vredenburg VT, Simon M-A, Billheimer D, Shakhtour B, Shyr Y, Briggs CJ, Rollins-Smith LA, Harris RN (2007) Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol. Conserv. 138:390–398

    Article  Google Scholar 

  71. Kueneman JG, Woodhams DC, Harris R, Archer HM, Knight R, McKenzie VJ (2016) Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity. Proceedings of the Royal Society B, Vol. 283. No 1839, pp. 20161553. The Royal Society

  72. Becker MH, Walke JB, Cikanek S, Savage AE, Mattheus N, Santiago CN, Minbiole KP, Harris RN, Belden LK, Gratwicke B (2015) Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc. R. Soc. B 282:20142881. doi:10.1098/rspb.2014.2881

    Article  PubMed  PubMed Central  Google Scholar 

  73. Küng D, Bigler L, Davis LR, Gratwicke B, Griffith E, Woodhams DC (2014) Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease. PLoS One 9:e87101. doi:10.1371/journal.pone.0087101

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kueneman JG, Woodhams DC, Van Treuren W, Archer HM, Knight R, McKenzie VJ (2016) Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME J 10:934–944

    Article  PubMed  Google Scholar 

  75. Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol. Ecol. 23:1238–1250. doi:10.1111/mec.12510

    Article  PubMed  Google Scholar 

  76. Savage AE, Zamudio KR (2016) Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations. Proceedings of the Royal Society B Vol. 283. No 1827. The Royal Society

  77. Myers JM, Ramsey JP, Blackman AL, Nichols AE, Minbiole KP, Harris RN (2012) Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: the combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. J. Chem. Ecol. 38:958–965. doi:10.1007/s10886-012-0170-2

    Article  PubMed  Google Scholar 

  78. Loudon AH, Holland JA, Umile TP, Burzynski EA, Minbiole KPC, Harris RN (2014) Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front. Microbiol. 5:441. doi:10.3389/fmicb.2014.00441

    Article  PubMed  PubMed Central  Google Scholar 

  79. Berger L, Marantelli G, Skerratt LL, Speare R (2005) Virulence of the amphibian chytrid fungus Batrachochytrium dendrobatidis varies with the strain. Dis. Aquat. Org. 68:47–50. doi:10.3354/dao068047

    Article  PubMed  Google Scholar 

  80. Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TW, Weaver G, Bd Mapping G, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8:e56802. doi:10.1371/journal.pone.0056802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Berger L, Speare R, Hines H, Marantelli G, Hyatt A, McDonald K, Skerratt L, Olsen V, Clarke J, Gillespie G (2004) Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust. Vet. J. 82:82

    Google Scholar 

  82. Gervasi S, Gondhalekar C, Olson DH, Blaustein AR (2013) Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen. PLoS One 8:e54490. doi:10.1371/journal.pone.0054490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Becker MH, Harris RN (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS One 5:e10957. doi:10.1371/journal.pone.0010957

    Article  PubMed  PubMed Central  Google Scholar 

  84. Richards-Zawacki CL (2010) Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Proc. R. Soc. B 277:519–528. doi:10.1098/rspb.2009.1656

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Brandon LaBumbard and Bhumi Patel for their technical assistance. This study was funded in part by an NSF grant (DEB-1146284) to VJM and the Dimensions in Biodiversity program DEB-1136662 to KPCM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kevin P. C. Minbiole or Douglas C. Woodhams.

Electronic supplementary material

Figure S1

(DOCX 56 kb).

Figure S2

(DOCX 61 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnhart, K., Forman, M.E., Umile, T.P. et al. Identification of Bufadienolides from the Boreal Toad, Anaxyrus boreas, Active Against a Fungal Pathogen. Microb Ecol 74, 990–1000 (2017). https://doi.org/10.1007/s00248-017-0997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0997-8

Keywords

Navigation