Skip to main content
Log in

Induced Defenses of a Novel Host Tree Affect the Growth and Interactions of Bark Beetle-Vectored Fungi

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Mountain pine beetle (MPB) has recently expanded its host range to the novel jack pine forests in Alberta. Invasion success of MPB may depend on the outcome of interactions between its symbiotic fungus Grosmannia clavigera and Ophiostoma ips, a fungal associate of a potential competitor Ips pini. However, how the quality of jack pine phloem could influence interactions between the fungi is unknown. We investigated whether introduced concentrations of host nitrogen and monoterpenes affect the growth of and interaction between the fungi. Nitrogen concentrations did not affect the growth rate of either fungus. In the absence of monoterpenes, the presence of O. ips promoted G. clavigera growth. Monoterpenes either promoted or inhibited the growth of both fungi, and altered the outcome of species interactions from facilitation to no-effect. Overall, these results suggest that jack pine phloem quality and the presence of a niche-sharing fungus could influence MPB development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140. https://doi.org/10.2307/1942528

    Article  Google Scholar 

  2. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance? New Phytol 157:475–492. https://doi.org/10.1046/j.1469-8137.2003.00704.x

    Article  Google Scholar 

  3. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72. https://doi.org/10.1038/23932

    Article  CAS  Google Scholar 

  4. Rayner ADM, Boddy L (1988) Fungal decomposition of wood: its biology and ecology. Wiley, Sussex

    Google Scholar 

  5. Boddy L (2000) Interspecific combative interactions between wood-decaying Basidiomycetes. FEMS Microbiol Ecol 31:185–194. https://doi.org/10.1111/j.1574-6941.2000.tb00683.x

    Article  CAS  PubMed  Google Scholar 

  6. Carroll G, Wicklow D (1992) The fungal community: its organization and role in the ecosystem. Marcel Dekker, New York

    Google Scholar 

  7. Klepzig K, Flores-Otero J, Hofstetter RW, Ayres MP (2004) Effects of available water on growth and competition of southern pine beetle associated fungi. Mycol Res 108:183–188. https://doi.org/10.1017/s0953756203009055

    Article  PubMed  Google Scholar 

  8. Bleiker KP, Six DL (2009) Effects of water potential and solute on the growth and interactions of two fungal symbionts of the mountain pine beetle. Mycol Res 113:3–15. https://doi.org/10.1016/j.mycres.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  9. Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206. https://doi.org/10.1146/annurev.ento.42.1.179

    Article  CAS  PubMed  Google Scholar 

  10. Bleiker KP, Six DL (2007) Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environ Entomol 36:1384–1396. https://doi.org/10.1093/ee/36.6.1384

    Article  CAS  PubMed  Google Scholar 

  11. Boone CK, Aukema BH, Bohlmann J, Carroll AL, Raffa KF (2011) Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Can J For Res 41:1174–1188. https://doi.org/10.1139/x11-041

    Article  Google Scholar 

  12. Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675. https://doi.org/10.1111/j.1469-8137.2006.01716

    Article  CAS  PubMed  Google Scholar 

  13. Raffa KF, Aukema BH, Erbilgin N, Klepzig KD, Wallin KF (2005) Interactions among conifer terpenoids and bark beetles across multiple levels of scale: an attempt to understand links between population patterns and physiological processes. Recent Adv Phytochem 39:79–118

    Article  CAS  Google Scholar 

  14. Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–517. https://doi.org/10.1641/b580607

    Article  Google Scholar 

  15. Adams A, Six D (2007) Temporal variation in mycophagy and prevalence of fungi associated with developmental stages of Dendroctonus ponderosae (Coleoptera: Curculionidae). Environ Entomol 36:64–72. https://doi.org/10.1093/ee/36.1.64

    Article  PubMed  Google Scholar 

  16. Ayres M, Wilkens R, Ruel J, Lombardero M, Vallery E (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81:2198–2210. https://doi.org/10.1890/0012-9658(2000)081[2198:NBOPFB]2.0.CO;2

    Article  Google Scholar 

  17. Cale JA, Muskens M, Najar A, Ishangulyyeva G, Hussain A, Kanekar SS, Klutsch JG, Taft S, Erbilgin N (2017) Rapid monoterpene induction promotes the susceptibility of a novel host pine to mountain pine beetle colonization but not to beetle-vectored fungi. Tree Physiol 37:1597–1610. https://doi.org/10.1093/treephys/tpx089

    Article  CAS  PubMed  Google Scholar 

  18. Raffa KF, Smalley EB (1995) Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia 102:285–295. https://doi.org/10.1007/bf00329795

    Article  PubMed  Google Scholar 

  19. Klepzig KD, Six DL (2004) Bark beetle-fungal symbiosis: context dependency in complex associations. Symbiosis 37:189–205

    Google Scholar 

  20. Rudinsky JA (1962) Ecology of Scolytidae. Annu Rev Entomol 7:327–348. https://doi.org/10.1146/annurev.en.07.010162.001551

    Article  Google Scholar 

  21. Raffa KF, Berryman AA (1983) The role of host plant resistance in the colonization behavior and ecology of bark beetles (Coleoptera: Scolytidae). Ecol Monogr 53:27–49. https://doi.org/10.2307/1942586

    Article  Google Scholar 

  22. Whitney HS (1982) Relationships between bark beetles and symbiotic organisms. In: Mitton JB, Sturgeon KB (eds) Bark beetles in North America. University of Texas, Austin, pp 183–211

    Google Scholar 

  23. Six DL, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle–fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272. https://doi.org/10.1146/annurev-ento-120709-144839

    Article  CAS  PubMed  Google Scholar 

  24. DiGuistini S, Ralph SG, Lim YW, Holt R, Jones S, Bohlmann J, Breuil C (2007) Generation and annotation of lodgepole pine and oleoresin-induced expressed sequences from the blue-stain fungus Ophiostoma clavigerum, a mountain pine beetle-associated pathogen. FEMS Microbiol Lett 267:151–158. https://doi.org/10.1111/j.1574-6968.2006.00565.x

    Article  CAS  PubMed  Google Scholar 

  25. Dl S, Klepzig KD (2004) Dendroctonus bark beetles as model systems for studies on symbiosis. Symbiosis 37:207–232

    Google Scholar 

  26. Bentz BJ, Six DL (2006) Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). Ann Entomol Soc Am 99:189–194. https://doi.org/10.1603/0013-8746(2006)099[0189:ECOFAW]2.0.CO;2

    Article  CAS  Google Scholar 

  27. Clayton RB (1964) The utilization of sterols by insects. J Lipid Res 15:3–19

    Google Scholar 

  28. Norris DM, Baker JM, Chu HM (1969) Symbiotic interrelationships between microbes and ambrosia beetles III. Ergosterol as the source of sterol to the insect. Ann Entomol Soc Am 62:413–414. https://doi.org/10.1093/aesa/62.2.413

    Article  CAS  Google Scholar 

  29. Therrien J, Mason CJ, Cale JA, Adams A, Aukema BH, Currie CC, Raffa KF, Erbilgin N (2015) Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion. Oecologia 179:467–485. https://doi.org/10.1007/s00442-015-3356-9

    Article  PubMed  Google Scholar 

  30. Goodsman DW, Erbilgin N, Lieffers VJ (2012) The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts. Environ Entomol 41:478–486. https://doi.org/10.1603/en11205

    Article  PubMed  Google Scholar 

  31. Ishangulyyeva G, Najar A, Curtis JM, Erbilgin N (2016) Fatty acid composition of novel host jack pine do not prevent host acceptance and colonization by the invasive mountain pine beetle and its symbiotic fungus. PLoS One 11:e0162046. https://doi.org/10.1371/journal.pone.0162046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Myrholm CL, Langor DW (2015) Assessment of the impact of symbiont Ophiostomatales (fungi) on mountain pine beetle (Coleoptera: Curculionidae) performance on a jack pine (Pinaceae) diet using a novel in vitro rearing method. Can Entomol 148:68–82. https://doi.org/10.4039/tce.2015.28

    Article  Google Scholar 

  33. Six DL, Paine TD (1998) Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environ Entomol 27:1393–1401. https://doi.org/10.1093/ee/27.6.1393

    Article  Google Scholar 

  34. Bentz BJ, Régnière J, Fettig C, Hansen E, Hayes J, Hicke J et al (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60:602–613. https://doi.org/10.1525/bio.2010.60.8.6

    Article  Google Scholar 

  35. Safranyik L, Carroll AL, Régnière J, Langor DW, Riel WG, Shore TL et al (2010) Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can Entomol 142:415–442. https://doi.org/10.4039/n08-cpa01

    Article  Google Scholar 

  36. Cullingham CI, Cooke JEK, Dang S, Davis CS, Cooke BJ, Coltman DW (2011) Mountain pine beetle host-range expansion threatens the boreal forest. Mol Ecol 20:2157–2171. https://doi.org/10.1111/j.1365-294x.2011.05086.x

    Article  PubMed  PubMed Central  Google Scholar 

  37. Erbilgin N, Ma C, Whitehouse C, Shan B, Najar A, Evenden M (2014) Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem. New Phytol 201:940–950. https://doi.org/10.1111/nph.12573

    Article  PubMed  Google Scholar 

  38. Lusebrink I, Erbilgin N, Evenden M (2013) The lodgepole × jack pine hybrid zone in Alberta, Canada: a stepping stone for the mountain pine beetle on its journey east across the boreal forest? J Chem Ecol 39:1209–1220. https://doi.org/10.1007/s10886-013-0334-8

    Article  CAS  PubMed  Google Scholar 

  39. Erbilgin N (2019) Phytochemicals as mediators for host range expansion of a native invasive forest insect herbivore. New Phytol 221:1268–1278. https://doi.org/10.1111/nph.15467

    Article  PubMed  Google Scholar 

  40. Lee S, Kim JJ, Breuil C (2005) Leptographium longiclavatum sp. nov., a new species associated with the mountain pine beetle, Dendroctonus ponderosae. Mycol Res 109:1162–1170. https://doi.org/10.1017/s0953756205003588

    Article  CAS  PubMed  Google Scholar 

  41. Lee S, Kim JJ, Breuil C (2006) Diversity of fungi associated with the mountain pine beetle, Dendroctonus ponderosae and infested lodgepole pines in British Columbia. Fungal Divers 22:91–105

    Google Scholar 

  42. Roe AD, James PMA, Rice AV, Cooke JEK, Sperling FAH (2011) Spatial community structure of mountain pine beetle fungal symbionts across a latitudinal gradient. Microb Ecol 62:347–360. https://doi.org/10.1007/s00248-011-9841-8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Six DL (2003) A comparison of mycangial and phoretic fungi of individual mountain pine beetles. Can J For Res 33:1331–1334. https://doi.org/10.1139/x03-047

    Article  Google Scholar 

  44. Whitney HS, Farris SH (1970) Maxillary mycangium in the mountain pine beetle. Science 167:54–55. https://doi.org/10.1126/science.167.3914.54

    Article  CAS  PubMed  Google Scholar 

  45. Erbilgin N, Nordheim EV, Aukema BH, Raffa KF (2002) Population dynamics of Ips pini and Ips grandicollis in red pine plantations in Wisconsin: within- and between-year associations with predators, competitors, and habitat quality. Environ Entomol 31:1043–1051. https://doi.org/10.1603/0046-225x-31.6.1043

    Article  Google Scholar 

  46. Erbilgin N, Raffa KF (2002) Association of declining red pine stands with reduced populations of bark beetle predators, seasonal increases in root colonizing insects, and incidence of root pathogens. Forest Ecol Manag 164:221–236. https://doi.org/10.1016/s0378-1127(01)00596-5

    Article  Google Scholar 

  47. Kegley S, Livingston R, Gibson K (1997) Pine engraver, Ips pini (Say), in the western United States. USDA Forest Service, Forest Insect and Disease Leaflet 122, pp 5.

  48. Kopper BJ, Klepzig KD, Raffa KF (2004) Components of antagonism and mutualism in Ips pini–fungal interactions: relationship to a life history of colonizing highly stressed and dead trees. Environ Entomol 33:28–34. https://doi.org/10.1603/0046-225x-33.1.28

    Article  Google Scholar 

  49. Kopper BJ, Illman BL, Kersten PJ, Klepzig KD, Raffa KD (2005) Effects of diterpene acids on components of a conifer bark beetle–fungal interaction: tolerance by Ips pini and sensitivity by its associate Ophiostoma ips. Environ Entomol 34:486–493. https://doi.org/10.1603/0046-225x-34.2.486

    Article  CAS  Google Scholar 

  50. Schenk JA, Benjamin DM (1969) Notes on the biology of Ips pini in Central Wisconsin jack pine forests. Ann Entomol Soc Am 62:480–485. https://doi.org/10.1093/aesa/62.3.480

    Article  Google Scholar 

  51. Colgan LJ, Erbilgin N (2010) The ecological interaction of the mountain pine beetle and jack pine budworm in the boreal forest. Forest Chron 86:766–774. https://doi.org/10.5558/tfc86766-6

    Article  Google Scholar 

  52. Schenk JAL, Benjamin DM (1969) Notes on the biology of Ips pini in Central Wisconsin jack pine forests, Pinus banksiana. Ann Entomol Soc Am 62:480–485

    Article  Google Scholar 

  53. Klepzig KD, Raffa KF, Smalley EB (1991) Association of insect-fungal complexes with red pine decline in Wisconsin. For Sci 37:1119–1139

    Google Scholar 

  54. Rankin LJ, Borden JH (1991) Competitive interactions between the mountain pine beetle and the pine engraver in lodgepole pine. Can J For Res 21:1029–1036. https://doi.org/10.1139/x91-141

    Article  Google Scholar 

  55. Furniss MM, Carolin VM (1977) Western forest insects. USDA for. Serv. Misc. Publ. No. 1339.Safranyik and Linton 1991

  56. Safranyik L, Shore TL, Linton DA (1996) Ipsdienol and lanierone increases Ips pini Say (Coleoptera: Scolytidae) attacks and brood density in lodgepole pine infested by mountain pine beetle. Can Entomol 128:199–207. https://doi.org/10.4039/Ent128199-2

    Article  Google Scholar 

  57. Esch ED, Spence JR, Langor DW (2016) Saproxylic beetle (Coleoptera) diversity in subalpine whitebark pine and lodgepole pine (Pinaceae) trees killed by mountain pine beetles (Coleoptera: Curculionidae). Can Entomol 148:556–568. https://doi.org/10.4039/tce.2016.3

    Article  Google Scholar 

  58. Lusebrink I, Erbilgin N, Evenden ML (2016) The effect of water limitation on volatile emission, tree defense response, and brood success of Dendroctonus ponderosae in two pine hosts, lodgepole, and jack pine. Front Ecol Evol 4. https://doi.org/10.3389/fevo.2016.00002

  59. Guevara-Razo S, Classens G, Hussain A, Erbilgin N (2019) Short and long-term storage of jack pine bolts in associated with higher concentrations of monoterpenes and nutrients. Can J For Res 49:305–308. https://doi.org/10.1139/cjfr-2018-0305

    Article  CAS  Google Scholar 

  60. Hussain A, Classens G, Guevara-Rozo S, Erbilgin N (2019) Soil and phloem nutrients altered the host acceptance and reproduction of mountain pine beetle in its novel host. Environ Entomol 48:945–952. https://doi.org/10.1093/ee/nvz054

    Article  CAS  PubMed  Google Scholar 

  61. Hussain A, Classens G, Guevara-Roxo S, Cale JA, Rajabzadeh R, Peters BR, Erbilgin N (2020) Spatial variation in soil available water holding capacity alters carbon mobilization and allocation to chemical defenses along jack pine stems. Environ Exp Bot 171:103902. https://doi.org/10.1016/j.envexpbot.2019.103902

    Article  CAS  Google Scholar 

  62. Erbilgin N, Cale JA, Lusebrink I, Najar A, Klutsch JG, Sherwood P, Bonello P, Evenden ML (2016) Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle. Tree Physiol 37:338–350. https://doi.org/10.1093/treephys/tpw105

    Article  CAS  Google Scholar 

  63. Klutsch JG, Erbilgin N (2018) Dwarf mistletoe infection in jack pine alters growth–defense relationships. Tree Physiol 38:1538–1547. https://doi.org/10.1093/treephys/tpy090

    Article  CAS  PubMed  Google Scholar 

  64. Klutsch JG, Najar A, Cale JA, Erbilgin N (2016) Direction of interaction between mountain pine beetle (Dendroctonus ponderosae) and resource-sharing wood-boring beetles depends on plant parasite infection. Oecologia 182:1–12. https://doi.org/10.1007/s00442-016-3559-8

    Article  PubMed  Google Scholar 

  65. Klutsch JG, Najar A, Sherwood P, Bonello P, Erbilgin N (2017) A native parasitic plant systemically induces resistance in jack pine to a fungal symbiont of invasive mountain pine beetle. J Chem Ecol 43:506–518. https://doi.org/10.1007/s10886-017-0845-9

    Article  CAS  PubMed  Google Scholar 

  66. Abramoff M, Magalgaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42 K

    Google Scholar 

  67. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  68. Paine TD, Hanlon CC (1994) Influence of oleoresin constituents from Pinus ponderosa and Pinus jeffreyi on growth of mycangial fungi from Dendroctonus ponderosae and Dendroctonus jeffreyi. J Chem Ecol 20:2551–2563

    Article  CAS  Google Scholar 

  69. Chiu CC, Keeling CI, Bohlmann J (2017) Toxicity of pine monoterpenes to mountain pine beetle. Sci Rep 7:8858. https://doi.org/10.1038/s41598-017-08983-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reid ML, Sekhon JK, LaFramboise LM (2017) Toxicity of monoterpene identity, diversity, and concentration to mountain pine beetles, Dendroctonus ponderosae: beetle traits matter more. J Chem Ecol 43:351–361. https://doi.org/10.1007/s10886-017-0824-1

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y, Lim L, DiGuistini S, Robertson G, Bohlmann J, Breuil C (2012) A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees. New Phytol 197:886–898. https://doi.org/10.1111/nph.12063

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, Lim L, Madilao L, Lah L, Bohlmann J, Breuil C (2014) Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera. Appl Environ Microbiol 80:4566–4576. https://doi.org/10.1128/aem.00670-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161. https://doi.org/10.1146/annurev.es.11.110180.001003

    Article  Google Scholar 

  74. Colgan LJ, Erbilgin N (2011) Tree-mediated interactions between the jack pine budworm and a mountain pine beetle fungal associate. Ecol Entomol 36:425–434. https://doi.org/10.1111/j.1365-2311.2011.01283.x

    Article  Google Scholar 

  75. Adhikari B, Hamilton J, Zerillo M, Tisserat N, Lévesque C, Buell C (2013) Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS One 8:e75072. https://doi.org/10.1371/journal.pone.0075072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jankowiak R, Bilański P (2013) Ophiostomatoid fungi associated with root-feeding bark beetles on Scots pine in Poland. For Pathol 43:422–428. https://doi.org/10.1111/efp.12049

    Article  Google Scholar 

  77. Raffa KF, Mason CJ, Bonello P, Cook S, Erbilgin N, Keefover-Ring K et al (2017) Defence syndromes in lodgepole–whitebark pine ecosystems relate to degree of historical exposure to mountain pine beetles. Plant Cell Environ 40:1791–1806. https://doi.org/10.1111/pce.12985

    Article  CAS  PubMed  Google Scholar 

  78. Kim J-J, Kim SH, Lee S, Breuil C (2003) Distinguishing Ophiostoma ips and Ophiostoma montium, two bark beetle-associated sapstain fungi. FEMS Microbiol Let 222:187–192. https://doi.org/10.1016/S0378-1097(03)00304-5

    Article  CAS  Google Scholar 

  79. Bleiker KP, Six DL (2009) Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees. Microb Ecol 57:191–202. https://doi.org/10.1007/s00248-008-9395-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Tod Ramsfield at Northern Forestry Centre for providing the fungal culture and endless support. We would like to also thank Guncha Ishangulyyeva, Altaf Hussain, and everyone else in Erbilgin’s lab for providing laboratory and field assistance.

Funding

This work was supported by funding provided by Canada Foundation of Innovation and NSERC–Discovery Award to Nadir Erbilgin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Cale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Cale, J.A. & Erbilgin, N. Induced Defenses of a Novel Host Tree Affect the Growth and Interactions of Bark Beetle-Vectored Fungi. Microb Ecol 80, 181–190 (2020). https://doi.org/10.1007/s00248-020-01490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01490-0

Keywords

Navigation