Skip to main content

Advertisement

Log in

Microbial Diversity of Adult Aedes aegypti and Water Collected from Different Mosquito Aquatic Habitats in Puerto Rico

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Mosquitoes, the major vectors of viruses like dengue, are naturally host to diverse microorganisms, which play an important role in their development, fecundity, immunity, and vector competence. The composition of their microbiota is strongly influenced by the environment, particularly their aquatic larval habitat. In this study, we used 2×300 bp 16s Illumina sequencing to compare the microbial profiles of emerging adult Aedes aegypti mosquitoes and the water collected from common types of aquatic habitat containers in Puerto Rico, which has endemic dengue transmission. We sequenced 141 mosquito and 46 water samples collected from plastic containers, septic tanks, discarded tires, underground trash cans, tree holes, or water meters. We identified 9 bacterial genera that were highly prevalent in the mosquito microbiome, and 77 for the microbiome of the aquatic habitat. The most abundant mosquito-associated bacterial OTUs were from the families Burkholderiaceae, Pseudomonadaceae, Comamonadaceae, and Xanthomonadaceae. Microbial profiles varied greatly between mosquitoes, and there were few major differences explained by container type; however, the microbiome of mosquitoes from plastic containers was more diverse and contained more unique taxa than the other groups. Container water was significantly more diverse than mosquitoes, and our data suggest that mosquitoes filter out many bacteria, with Alphaproteobacteria in particular being far more abundant in water. These findings provide novel insight into the microbiome of mosquitoes in the region and provide a platform to improve our understanding of the fundamental mosquito-microbe interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All raw sequence data are available through google drive (https://drive.google.com/drive/folders/17aUjQy8fwFOkepyDv0GRcHbtj5HHkaW5?usp=sharing)

References

  1. WHO (2017) World Health Organization (2017) Chikungunya. Fact Sheets. Published online: 12 April 2017. Available: www.who.int/news-room/factsheets/detail/chikungunya

  2. World Health Organization (2018) Zika virus. Fact Sheets. Published online: 20 July 2018. Available: www.who.int/news-room/factsheets/detail/zika-virus

  3. World Health Organization (2019) Dengue and severe dengue. Fact Sheets. Published online: 15 April 2019. Available: www.who.int/newsroom/fact-sheets/detail/dengue-and-severe-dengue

  4. Gould EA, Higgs S (2009) Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg 103(2):109–121. https://doi.org/10.1016/j.trstmh.2008.07.025

  5. Gubler DJ (2011) Dengue, urbanization and globalization: the unholy trinity of the 21(st) Century. Trop Med Health 39(4):3–11. https://doi.org/10.2149/tmh.2011-S05

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, Hendrickx G, Schaffner F, Elyazar IR, Teng HJ, Brady OJ, Messina JP, Pigott DM, Scott TW, Smith DL, Wint GR, Golding N, Hay SI (2015) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4:e08347. https://doi.org/10.7554/eLife.08347

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilder-Smith A (2012) Dengue infections in travellers. Paediatr Int Child Health 32(1):28–32. https://doi.org/10.1179/2046904712Z.00000000050

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wilder-Smith A, Gubler DJ (2008) Geographic expansion of dengue: the impact of international travel. Med Clin North Am 92(6):1377–1390, x. https://doi.org/10.1016/j.mcna.2008.07.002

    Article  PubMed  Google Scholar 

  9. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nat 496(7446):504–507. https://doi.org/10.1038/nature12060

    Article  CAS  Google Scholar 

  10. Ranson H, Lissenden N (2016) Insecticide resistance in African anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol 32(3):187–196. https://doi.org/10.1016/j.pt.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  11. Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H (2012) Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol 104(2):126–131. https://doi.org/10.1016/j.pestbp.2012.05.008

    Article  CAS  Google Scholar 

  12. Caragata EP, Otero LM, Carlson JS, Borhani Dizaji N, Dimopoulos G (2020) A nonlive preparation of Chromobacterium sp. Panama (Csp_P) is a highly effective larval mosquito biopesticide. Appl Environ Microbiol 86(11). https://doi.org/10.1128/AEM.00240-20

  13. Lacey LA (2007) Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23(2):133–163. https://doi.org/10.2987/8756-971X(2007)23[133:BTSIAB]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  14. Shane JL, Grogan CL, Cwalina C, Lampe DJ (2018) Blood meal-induced inhibition of vector-borne disease by transgenic microbiota. Nat Commun 9(1):4127. https://doi.org/10.1038/s41467-018-06580-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang S, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G, Agre P, Jacobs-Lorena M (2017) Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Sci 357(6358):1399–1402. https://doi.org/10.1126/science.aan5478

    Article  CAS  Google Scholar 

  16. Ryan PA, Turley AP, Wilson G, Hurst TP, Retzki K, Brown-Kenyon J, Hodgson L, Kenny N, Cook H, Montgomery BL, Paton CJ, Ritchie SA, Hoffmann AA, Jewell NP, Tanamas SK, Anders KL, Simmons CP, O'Neill SL (2019) Establishment of wMel Wolbachia in Aedes aegypti mosquitoes and reduction of local dengue transmission in Cairns and surrounding locations in northern Queensland, Australia. Gates Open Res 3:1547. https://doi.org/10.12688/gatesopenres.13061.2

    Article  PubMed  Google Scholar 

  17. Zheng XY, Zhang DJ, Li YJ, Yang C, Wu Y, Liang X, Liang YK, Pan XL, Hu LC, Sun Q, Wang XH, Wei YY, Zhu J, Qian W, Yan ZQ, Parker AG, Gilles JRL, Bourtzis K, Bouyer J, Tang MX, Zheng B, Yu JS, Liu JL, Zhuang JJ, Hu ZG, Zhang MC, Gong JT, Hong XY, Zhang ZB, Lin LF, Liu QY, Hu ZY, Wu ZD, Baton LA, Hoffmann AA, Xi ZY (2019) Incompatible and sterile insect techniques combined eliminate mosquitoes. Nat 572(7767):56–61. https://doi.org/10.1038/s41586-019-1407-9

    Article  CAS  Google Scholar 

  18. Guégan M, Zouache K, Demichel C, Minard G, Tran Van V, Potier P, Mavingui P, Valiente Moro C (2018) The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome 6(1):49. https://doi.org/10.1186/s40168-018-0435-2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Caragata EP, Tikhe CV, Dimopoulos G (2019) Curious entanglements: interactions between mosquitoes, their microbiota, and arboviruses. Curr Opin Virol 37:26–36. https://doi.org/10.1016/j.coviro.2019.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  20. Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R, Morlais I (2012) Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog 8(5):e1002742. https://doi.org/10.1371/journal.ppat.1002742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coon KL, Brown MR, Strand MR (2016) Mosquitoes host communities of bacteria that are essential for development but vary greatly between local habitats. Mol Ecol 25(22):5806–5826. https://doi.org/10.1111/mec.13877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coon KL, Vogel KJ, Brown MR, Strand MR (2014) Mosquitoes rely on their gut microbiota for development. Mol Ecol 23(11):2727–2739. https://doi.org/10.1111/mec.12771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Valzania L, Martinson VG, Harrison RE, Boyd BM, Cooncurrency KL, Brown MR, Strand MR (2018) Both living bacteria and eukaryotes in the mosquito gut promote growth of larvae. PLoS Negl Trop Dis 12(7):e0006638. https://doi.org/10.1371/journal.pntd.0006638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Correa MA, Matusovsky B, Brackney DE, Steven B (2018) Generation of axenic Aedes aegypti demonstrate live bacteria are not required for mosquito development. Nat Commun 9:4464. https://doi.org/10.1038/s41467-018-07014-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Duguma D, Hall MW, Rugman-Jones P, Stouthamer R, Terenius O, Neufeld JD, Walton WE (2015) Developmental succession of the microbiome of Culex mosquitoes. BMC Microbiol 15:140. https://doi.org/10.1186/s12866-015-0475-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Galeano-Castañeda Y, Bascunan P, Serre D, Correa MM (2020) Trans-stadial fate of the gut bacterial microbiota in Anopheles albimanus. Acta Trop 201:105204. https://doi.org/10.1016/j.actatropica.2019.105204

    Article  CAS  PubMed  Google Scholar 

  27. Coon KL, Brown MR, Strand MR (2016) Gut bacteria differentially affect egg production in the anautogenous mosquito Aedes aegypti and facultatively autogenous mosquito Aedes atropalpus (Diptera: Culicidae). Parasit Vectors 9:375. https://doi.org/10.1186/s13071-016-1660-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gaio AD, Gusmao DS, Santos AV, Berbert-Molina MA, Pimenta PFP, Lemos FJA (2011) Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (Diptera: Culicidae) (L.). Parasit Vectors 4:105. https://doi.org/10.1186/1756-3305-4-105

    Article  PubMed Central  Google Scholar 

  29. Sharma A, Dhayal D, Singh OP, Adak T, Bhatnagar RK (2013) Gut microbes influence fitness and malaria transmission potential of Asian malaria vector Anopheles stephensi. Acta Trop 128(1):41–47. https://doi.org/10.1016/j.actatropica.2013.06.008

    Article  PubMed  Google Scholar 

  30. Barletta ABF, Nascimento-Silva MCL, Talyuli OAC, Oliveira JHM, Pereira LOR, Oliveira PL, Sorgine MHF (2017) Microbiota activates IMD pathway and limits Sindbis infection in Aedes aegypti. Parasit Vectors 10:103. https://doi.org/10.1186/s13071-017-2040-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xi Z, Ramirez JL, Dimopoulos G (2008) The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4(7):e1000098. https://doi.org/10.1371/journal.ppat.1000098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, Xi Z (2012) Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 109(1):E23–E31. https://doi.org/10.1073/pnas.1116932108

    Article  PubMed  Google Scholar 

  33. Dutra HL, Rocha MN, Dias FB, Mansur SB, Caragata EP, Moreira LA (2016) Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 19(6):771–774. https://doi.org/10.1016/j.chom.2016.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139(7):1268–1278. https://doi.org/10.1016/J.Cell.2009.11.042

    Article  PubMed  Google Scholar 

  35. Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN (2012) Serratia odorifera a Midgut Inhabitant of Aedes aegypti Mosquito Enhances Its Susceptibility to Dengue-2 Virus. PLoS One 7(7):e40401. https://doi.org/10.1371/journal.pone.0040401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Apte-Deshpande AD, Paingankar MS, Gokhale MD, Deobagkar DN (2014) Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for Chikungunya virus. Indian J Med Res 139:762–768

    PubMed  PubMed Central  Google Scholar 

  37. Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, Tripathi A, Mlambo G, Dimopoulos G (2014) Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog 10(10):e1004398. https://doi.org/10.1371/journal.ppat.1004398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saraiva RG, Fang J, Kang S, Anglero-Rodriguez YI, Dong Y, Dimopoulos G (2018) Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLoS Negl Trop Dis 12(4):e0006443. https://doi.org/10.1371/journal.pntd.0006443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bennett KL, Gomez-Martinez C, Chin Y, Saltonstall K, McMillan WO, Rovira JR, Loaiza JR (2019) Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci Rep 9(1):12160. https://doi.org/10.1038/s41598-019-48414-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. David MR, Santos LM, Vicente AC, Maciel-de-Freitas R (2016) Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan. Mem Inst Oswaldo Cruz 111(9):577–587. https://doi.org/10.1590/0074-02760160238

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldana MA, Rojas MM, Hornett EA, Motl GC, Fredregill CL, Dennett JA, Debboun M, Fofanov Y, Hughes GL (2018) Microbiome interaction networks and community structure from laboratory-reared and field-collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors. Front Microbiol 9:2160. https://doi.org/10.3389/fmicb.2018.02160

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yadav KK, Bora A, Datta S, Chandel K, Gogoi HK, Prasad GB, Veer V (2015) Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India. Parasit Vectors 8:641. https://doi.org/10.1186/s13071-015-1252-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Segata N, Baldini F, Pompon J, Garrett WS, Truong DT, Dabiré RK, Diabaté A, Levashina EA, Catteruccia F (2016) The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender-and swarm-enriched microbial biomarkers. Sci Rep 6(1):1–10

    Article  Google Scholar 

  44. Villegas LM, Pimenta PFP (2014) Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem Inst Oswaldo Cruz 109(5):672–684

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang Y, Gilbreath 3rd TM, Kukutla P, Yan G, Xu J (2011) Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6(9):e24767. https://doi.org/10.1371/journal.pone.0024767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dickson LB, Ghozlane A, Volant S, Bouchier C, Ma L, Vega-Rua A, Dusfour I, Jiolle D, Paupy C, Mayanja MN, Kohl A, Lutwama JJ, Duong V, Lambrechts L (2018) Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome. Parasit Vectors 11(1):207. https://doi.org/10.1186/s13071-018-2780-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buck M, Nilsson LKJ, Brunius C, Dabire RK, Hopkins R, Terenius O (2016) Bacterial associations reveal spatial population dynamics in Anopheles gambiae mosquitoes. Sci Rep 6:22806. https://doi.org/10.1038/srep22806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yee DA, Allgood D, Kneitel J, Kuehn K (2012) Constitutive differences between natural and artificial container mosquito habitats: vector communities, resources, microorganisms, and habitat parameters. J Med Entomol 49(3):482–491

    Article  CAS  PubMed  Google Scholar 

  49. Barrera R, Amador M, Diaz A, Smith J, Munoz-Jordan J, Rosario Y (2008) Unusual productivity of Aedes aegypti in septic tanks and its implications for dengue control. Med Vet Entomol 22(1):62–69

    Article  CAS  PubMed  Google Scholar 

  50. Burke R, Barrera R, Lewis M, Kluchinsky T, Claborn D (2010) Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico. Med Vet Entomol 24(2):117–123

    Article  CAS  PubMed  Google Scholar 

  51. Irving-Bell R, Okoli E, Diyelong D, Lyimo E, Onyia O (1987) Septic tank mosquitoes: competition between species in central Nigeria. Med Vet Entomol 1(3):243–250

    Article  CAS  PubMed  Google Scholar 

  52. Glassing A, Dowd SE, Galandiuk S, Davis B, Jorden JR, Chiodini RJ (2015) Changes in 16s RNA gene microbial community profiling by concentration of prokaryotic DNA. J Microbiol Methods 119:239–242. https://doi.org/10.1016/j.mimet.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  53. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodriguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, LJ MI, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson 2nd MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vazquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, CHD W, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hornung BVH, Zwittink RD, Kuijper EJ (2019) Issues and current standards of controls in microbiome research. FEMS Microbiol Ecol 95(5). https://doi.org/10.1093/femsec/fiz045

  56. Alfano N, Tagliapietra V, Rosso F, Manica M, Arnoldi D, Pindo M, Rizzoli A (2019) Changes in microbiota across developmental stages of Aedes koreicus, an invasive mosquito vector in Europe: indications for microbiota-based control strategies. Front Microbiol 10:2832. https://doi.org/10.3389/fmicb.2019.02832

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gendrin M, Christophides GK (2013) The Anopheles mosquito microbiota and their impact on pathogen transmission. In: Manguin S (ed) Anopheles mosquitoes-New insights into malaria vectors. IntechOpen. https://doi.org/10.5772/3392

  58. Hughes GL, Garay JAR, Koundal V, Rasgon JL, Mwangi MM (2016) Genome sequence of Stenotrophomonas maltophilia strain SmAs1, isolated from the Asian malaria mosquito Anopheles stephensi. Genome Announc 4(2):e00086–e00016

    PubMed  PubMed Central  Google Scholar 

  59. Scolari F, Casiraghi M, Bonizzoni M (2019) Aedes spp. and their microbiota: a review. Front Microbiol 10:2036

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bando H, Okado K, Guelbeogo WM, Badolo A, Aonuma H, Nelson B, Fukumoto S, Xuan X, Sagnon NF, Kanuka H (2013) Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci Rep 3:1641

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen S, Blom J, Walker ED (2017) Genomic, physiologic, and symbiotic characterization of Serratia marcescens strains isolated from the mosquito Anopheles stephensi. Front Microbiol 8:1483

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Sci 332(6031):855–858

    Article  CAS  Google Scholar 

  63. Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, Liu H, Liu Q, Zhao T, Chen X (2019) A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe 25(1):101–112. e105

    Article  CAS  PubMed  Google Scholar 

  64. Saraiva RG, Huitt-Roehl CR, Tripathi A, Cheng YQ, Bosch J, Townsend CA, Dimopoulos G (2018) Chromobacterium spp. mediate their anti-Plasmodium activity through secretion of the histone deacetylase inhibitor romidepsin. Sci Rep 8(1):6176. https://doi.org/10.1038/s41598-018-24296-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ross PA, Callahan AG, Yang Q, Jasper M, Arif MAK, Afizah AN, Nazni WA, Hoffmann AA (2020) An elusive endosymbiont: does Wolbachia occur naturally in Aedes aegypti? Ecol Evol 10(3):1581–1591. https://doi.org/10.1002/ece3.6012

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kalyuhznaya MG, Martens-Habbena W, Wang T, Hackett M, Stolyar SM, Stahl DA, Lidstrom ME, Chistoserdova L (2009) Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environ Microbiol Rep 1(5):385–392

    Article  CAS  PubMed  Google Scholar 

  67. Lee K-B, Liu C-T, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55(5):1907–1919

    Article  CAS  PubMed  Google Scholar 

  68. Levett PN (2015) Systematics of Leptospiraceae. Leptospira and Leptospirosis. Springer, pp 11–20

  69. Neuenschwander SM, Ghai R, Pernthaler J, Salcher MM (2018) Microdiversification in genome-streamlined ubiquitous freshwater Actinobacteria. ISME J 12(1):185–198

    Article  CAS  PubMed  Google Scholar 

  70. Stein LY, Roy R, Dunfield PF (2001) Aerobic methanotrophy and nitrification: processes and connections. In: eLS. John Wiley & Sons, Ltd: Chichester.. https://doi.org/10.1002/9780470015902.a0022213

  71. Ravcheev DA, Gerasimova AV, Mironov AA, Gelfand MS (2007) Comparative genomic analysis of regulation of anaerobic respiration in ten genomes from three families of gamma-proteobacteria (Enterobacteriaceae, Pasteurellaceae, Vibrionaceae). BMC Genomics 8(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  72. Takahashi Y, Matsumoto A, Morisaki K, Ōmura S (2006) Patulibacter minatonensis gen. nov., sp. nov., a novel actinobacterium isolated using an agar medium supplemented with superoxide dismutase, and proposal of Patulibacteraceae fam. nov. Int J Syst Evol Microbiol 56(2):401–406

    Article  CAS  PubMed  Google Scholar 

  73. Kim C-H, Lampman RL, Muturi EJ (2015) Bacterial communities and midgut microbiota associated with mosquito populations from waste tires in East-Central Illinois. J Med Entomol 52(1):63–75

    Article  PubMed  Google Scholar 

  74. Akorli J, Gendrin M, Pels NAP, Yeboah-Manu D, Christophides GK, Wilson MD (2016) Seasonality and locality affect the diversity of Anopheles gambiae and Anopheles coluzzii midgut microbiota from Ghana. PLoS One 11(6):e0157529

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gimonneau G, Tchioffo MT, Abate L, Boissiere A, Awono-Ambene PH, Nsango SE, Christen R, Morlais I (2014) Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect Genet Evol 28:715–724. https://doi.org/10.1016/j.meegid.2014.09.029

    Article  PubMed  Google Scholar 

  76. Muturi EJ, Lagos-Kutz D, Dunlap C, Ramirez JL, Rooney AP, Hartman GL, Fields CJ, Rendon G, Kim C-H (2018) Mosquito microbiota cluster by host sampling location. Parasit Vectors 11(1):468

    Article  PubMed  PubMed Central  Google Scholar 

  77. Osei-Poku J, Mbogo C, Palmer W, Jiggins F (2012) Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol 21(20):5138–5150

    Article  CAS  PubMed  Google Scholar 

  78. Zoure AA, Sare AR, Yameogo F, Somda Z, Massart S, Badolo A, Francis F (2020) Bacterial communities associated with the midgut microbiota of wild Anopheles gambiae complex in Burkina Faso. Mol Biol Rep 47(1):211–224

    Article  CAS  PubMed  Google Scholar 

  79. Hery L, Guidez A, Durand AA, Delannay C, Normandeau-Guimond J, Reynaud Y, Issaly J, Goindin D, Legrave G, Gustave J, Raffestin S, Breurec S, Constant P, Dusfour I, Guertin C, Vega-Rua A (2020) Natural variation in physicochemical profiles and bacterial communities associated with Aedes aegypti breeding sites and larvae on Guadeloupe and French Guiana. Microb Ecol 81:93–109. https://doi.org/10.1007/s00248-020-01544-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Duguma D, Hall MW, Smartt CT, Neufeld JD (2017) Temporal variations of microbiota associated with the immature stages of two Florida Culex mosquito vectors. Microb Ecol 74(4):979–989

    Article  PubMed  Google Scholar 

  81. Novakova E, Woodhams DC, Rodríguez-Ruano SM, Brucker RM, Leff JW, Maharaj A, Amir A, Knight R, Scott J (2017) Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile virus. Front Microbiol 8:526

    Article  PubMed  PubMed Central  Google Scholar 

  82. Duguma D, Rugman-Jones P, Kaufman MG, Hall MW, Neufeld JD, Stouthamer R, Walton WE (2013) Bacterial communities associated with Culex mosquito larvae and two emergent aquatic plants of bioremediation importance. PLoS One 8(8):e72522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dada N, Jumas-Bilak E, Manguin S, Seidu R, Stenström T-A, Overgaard HJ (2014) Comparative assessment of the bacterial communities associated with Aedes aegypti larvae and water from domestic water storage containers. Parasit Vectors 7(1):391

    Article  PubMed  PubMed Central  Google Scholar 

  84. Rani A, Sharma A, Rajagopal R, Adak T, Bhatnagar RK (2009) Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi - an Asian malarial vector. BMC Microbiol 9(1):96

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro P, Mavingui P (2011) Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol 75(3):377–389

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank María Roubert, Jesús Estudillo, Luis Rivera, Luis Perez, and Orlando Gonzales for their assistance with field work; Betzabel Flores, Glenda Gonzales, and Gilberto Santiago for the technical support; Scot O’Dowd from Mr DNA (https://www.mrdnalab.com) for sequencing and data preparation services; and a special thanks to Luis Eduardo Martínez Villegas for the helpful discussion of the manuscript, data analysis tools, and microbial ecology. We thank the six anonymous reviewers for their helpful comments.

Code Availability

R scripts are available in the supplementary materials.

Funding

This work was funded by grants from the CDC (BAA 2017-N-18041) and USAID (AID-OAA-F-16-00096). This work has also been supported by the Bloomberg Philanthropies. CVT was supported by the Johns Hopkins Malaria Research Institutes’ postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Conceived of or designed study: EPC, LMO, RB, and GD. Performed research: EPC and LMO. Analyzed data: EPC and CVT. Wrote the paper: EPC and GD

Corresponding author

Correspondence to G. Dimopoulos.

Ethics declarations

Ethics Approval

Not applicable

Consent to Participate

Verbal consent was solicited and obtained from home/property owners before entering and collecting mosquito and container water samples when mosquito aquatic habitats were identified on private property.

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Fig. S1:

Bacterial profiles of mosquitoes and breeding site water for samples from supplementary dataset A. These bar plots represent the bacterial profiles of mosquito samples collected from miscellaneous plastic containers (a), tires (b), tree holes (c), and septic tanks (d), and paired water samples collected from plastic containers (e), tires (f), tree holes (g), and septic tanks (h). Mosquito and water samples sharing the same code i.e. M1, were independent samples collected from the breeding site. Each bar represents the profile of a single mosquito or water sample. Bacterial taxa of high abundance are depicted in different colours at the Family level, or as an unclassified Family belonging to an Order (Uncl.). Common colours represent Families from the same Class. Families of lower abundance have been grouped together as ‘Other’. (PNG 397 kb)

High Resolution (TIF 2212 kb)

Fig. S2:

Bacterial profiles of mosquitoes and breeding site water for samples from supplementary dataset B. These bar plots represent the bacterial profiles of mosquito samples collected from large plastic buckets (a), and septic tanks (b), and water sample collected from large plastic buckets (c), and septic tanks (d). Mosquito and water samples sharing the same code i.e. P5, were independent samples collected from the breeding site. Each bar represents the profile of a single mosquito or 1-2 water samples. Bacterial taxa of high abundance are depicted in different colours at the Family level, or as an unclassified Family belonging to an Order (Uncl.). Common colours represent Families from the same Class. Families of lower abundance have been grouped together as ‘Other’. (PNG 380 kb)

High Resolution (TIF 1263 kb)

Fig. S3:

NMDS ordination plots of mosquito and water samples for s supplementary dataset A. Ordination plots for mosquito (k = 2, stress = 0.21873) (a), and water samples (k = 2, stress = 0.16743) (b) split by breeding site type. A further panel (c) compares all water and mosquito samples (k = 3, stress = 0.16419). Plots were generated through non-metric multidimensional scaling (NMDS) using the metaMDS() function. Each dot depicts one sample, with samples from the same breeding site type sharing colours. Samples that are closer together in space have more similar bacterial profiles. (PNG 123 kb)

High Resolution (TIF 781 kb)

Fig. S4:

Venn diagrams comparing the bacteria present in samples from different breeding site types. Two-way Venn diagrams describe the number of bacterial genera that were identified in mosquito and water samples within the main data set. The region of overlap indicates the number of genera found in both water and mosquito samples. The other regions indicate unique bacterial genera associated with either sample type. Sample comparisons as follows: all mosquitoes and all breeding site water (a), plastics mosquitoes and their breeding site water (b), septics mosquitoes and their breeding site water (c), tire mosquitoes and their breeding site water (d), trash can mosquitoes and their breeding site water (e), tree hole mosquitoes and their breeding site water (f), water meter mosquitoes and their breeding site water (g). Panel (h) depicts the total number of genera identified in mosquitoes from each of the different breeding sites. (PNG 321 kb)

High Resolution (TIF 1277 kb)

Fig. S5:

Family level bacterial profiles of mosquito samples from Qiime2 pipeline data. Bar plots represent the bacterial profiles of adult female Ae. aegypti mosquitoes collected within 24 hours post-emergence from six different breeding site types: large plastic buckets (a), septic tanks (b), discarded tires (c), inground trash cans (d), tree holes (e), and water meter pits (f). Each bar represents the profile of a single mosquito sample. Bacterial taxa of high abundance are depicted in different colours at the Family level, or as an unclassified Family (Uncl.) belonging to a bacterial Order. Common colours represent Families from the same Class. Families of lower abundance have been grouped together as ‘Other’. Graphs are based on Qiime2 pipeline data. Dashed blue lines separate samples collected from different breeding sites. (PNG 430 kb)

High Resolution (TIF 2998 kb)

Fig. S6:

Family level bacterial profiles of breeding site water samples from Qiime2 pipeline data. Bar plots represent the bacterial profiles of breeding site water samples collected from large plastic buckets (a), septic tanks (b), discarded tires (c), inground trash cans (d), tree holes (e), and water meter pits (f). Each bar represents the profile of 1-2 water samples. Bacterial taxa of high abundance are depicted in different colours at the Family level, or as an unclassified Family belonging to an Order (Uncl.). Common colours represent Families from the same Class. Families of lower abundance have been grouped together as ‘Other’. Graphs are based on Qiime2 pipeline data. (PNG 306 kb)

High Resolution (TIF 1417 kb)

Fig. S7:

NMDS ordination plots of mosquito and water samples from Qiime2 pipeline data. Ordination plots for mosquito (k = 4, stress = 0.12496) (a) and water (k = 2, stress = 0.09972) (b) samples generated through non-metric multidimensional scaling (NMDS) using the metaMDS() function. Each dot depicts one sample, with samples from the same breeding site type sharing colours. Samples that are closer together in space have more similar bacterial profiles. Plots are based on Qiime2 pipeline data. (PNG 148 kb)

High Resolution (TIF 812 kb)

ESM 8

(DOCX 14 kb)

ESM 9

(DOCX 16 kb)

ESM 10

(XLSX 106 kb)

ESM 11

(XLSX 794 kb)

ESM 12

(XLSX 1042 kb)

ESM 13

(XLSX 248 kb)

ESM 14

(XLSX 1494 kb)

ESM 15

(DOCX 17 kb)

ESM 16

(XLSX 67 kb)

ESM 17

(XLSX 45 kb)

ESM 18

(DOCX 100 kb)

ESM 19

(XLSX 12 kb)

ESM 20

(XLSX 187 kb)

ESM 21

(XLSX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caragata, E.P., Otero, L.M., Tikhe, C.V. et al. Microbial Diversity of Adult Aedes aegypti and Water Collected from Different Mosquito Aquatic Habitats in Puerto Rico. Microb Ecol 83, 182–201 (2022). https://doi.org/10.1007/s00248-021-01743-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01743-6

Keywords

Navigation