Skip to main content

Advertisement

Log in

Diversity of Cyanobacteria and Algae During Primary Succession in Iron Ore Tailing Dumps

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The extraction of commercial minerals is often accompanied by the formation of large areas of quarry and dump technogenic ecosystems. This stimulates the search for measures to reduce their negative impact on the environment, as well as a detailed study of all the constituent elements of ecosystems that spontaneously or after reclamation form on them. Primary stages of syngenesis on the tailing dumps of iron ore mines in Kryvorizhzhia took place involving cyanobacteria and eukaryotic algae. The dynamics of the community structures of algae and cyanobacteria depends on the mineralogical composition of tailings, salinity conditions, pH, and content of particles of physical clay and humus. The assessment of the features of the dynamics of algae communities was carried out based on the ordination procedure because of the method of non-metric multidimensional scaling. The considered environmental variables were statistically significant predictors of community structure and could explain 47–90% of the variation in measurements. Diagnostic signs of the species composition of communities of algae and cyanobacteria tailing dumps were established by physical and chemical parameters. An increase in the content of physical clay particles in the substrate and a pH shift towards the alkaline side increased the species richness of cyanobacteria, while an increase in the humus content increased the total species diversity. Based on the specificity of the type of growth and the species composition of algae communities, when describing the primary successions, it is proposed to allocate the following stages of development of algae and cyanobacteria communities: dispersal aerophyton, stratose epilitophyton, algal crust, mixed moss and algal crust, and edaphone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Supplementary Table 1 Species of algae and cyanobacteria identified from the different soil samples collected from the 17 sample areas.

Code Availability

Not applicable.

References

  1. Rani N, Sharma HR, Kaushik A, Sagar A (2019) Bioremediation of mined waste land. In: Hussain C (ed) Handbook of environmental materials management. Springer, Cham, pp 557–582. https://doi.org/10.1007/978-3-319-73645-7_79

    Chapter  Google Scholar 

  2. Xu D, Zhan C, Liu H, Lin H (2019) A critical review on environmental implications, recycling strategies, and ecological remediation for mine tailings. Environ Sci Pollut Res 26(35):35657–35669. https://doi.org/10.1007/s11356-019-06555-3

    Article  Google Scholar 

  3. Edraki M, Baumgartl T, Manlapig E, Bradshaw D, Franks DM, Moran CJ (2014) Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches. J Clean Prod 84:411–420. https://doi.org/10.1016/j.jclepro.2014.04.079

    Article  Google Scholar 

  4. Wang L, Ji B, Hu Y, Liu R, Sun W (2017) A review on in situ phytoremediation of mine tailings. Chemosphere 184:594–600. https://doi.org/10.1016/j.chemosphere.2017.06.025

    Article  CAS  PubMed  Google Scholar 

  5. Asensio V, Covelo EF, Kandeler E (2013) Soil management of copper mine tailing soils – sludge amendment and tree vegetation could improve biological soil quality. Sci Total Environ 456–457:82–90. https://doi.org/10.1016/j.scitotenv.2013.03.061

    Article  CAS  PubMed  Google Scholar 

  6. Gil-Loaiza J, Field JP, White SA, Csavina J, Felix O, Betterton EA, Sáez AE, Maier RM (2018) Phytoremediation reduces dust emissions from metal(loid)-contaminated mine tailings. Environ Sci Technol 52:5851–5858

    Article  CAS  Google Scholar 

  7. Lyashenko VI, Gurin AA, Shevchenko AV, Lisovoi IA (2018) Perfection of nature protection technologies and means for dust suppression of mining and metallurgical production tailings surfaces. Ferrous Metallurgy. Bulletin of Scientific, Technical and Economic Information 12:15–26. https://doi.org/10.32339/0135-5910-2018-12-15-26

  8. Xiao J-H, Feng Q-M, Fan S-P, Longhua Xu, Wang Z (2013) Comprehensive utilization of copper, tungsten and tin polymetallic tailings in Bolivia. Chin J Nonferrous Met 23(10):2949–2961

    CAS  Google Scholar 

  9. Sun W, Wang HJ, Hou KP (2018) Control of waste rock-tailings paste backfill for active mining subsidence areas. J Clean Prod 171:567–579. https://doi.org/10.1016/j.jclepro.2017.09.253

    Article  Google Scholar 

  10. Rosario K, Iverson SL, Henderson DA, Chartrand S, McKeon C, Glenn EP, Maier RM (2007) Bacterial community changes during plant establishment at the San Pedro River mine tailings site. J Environ Qual 36(5):1249–1259. https://doi.org/10.2134/jeq2006.0315

    Article  CAS  PubMed  Google Scholar 

  11. Wang D, Zhang B, Zhu L, Yang Y, Li M (2018) Soil and vegetation development along a 10-year restoration chronosequence in tailing dams in the Xiaoqinling gold region of central China. CATENA 167:250–256. https://doi.org/10.1016/j.catena.2018.05.007

    Article  CAS  Google Scholar 

  12. Wu Z, Yu F, Sun X, Wu S, Li X, Liu T, Li Y (2018) Long term effects of Lespedeza bicolor revegetation on soil bacterial communities in Dexing copper mine tailings in Jiangxi Province, China. Appl Soil Ecol 125:192–201. https://doi.org/10.1016/j.apsoil.2018.01.011

    Article  Google Scholar 

  13. Kunah OM, Zelenko YV, Fedushko MP, Babchenko AV, Sirovatko VO, Zhukov OV (2019) The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin. Biosyst Divers 27:156–162. https://doi.org/10.15421/011921

    Article  Google Scholar 

  14. Rahmonov O, Cabala J, Bednarek R, Rozek D, Florkiewicz A (2015) Role of soil algae on the initial stages of soil formation in sandy polluted areas. Ecol Chem Eng S 22(4):675–690. https://doi.org/10.1515/eces-2015-0041

    Article  CAS  Google Scholar 

  15. Gypser S, Herppich WB, Fischer T, Lange P, Veste M (2016) Photosynthetic characteristics and their spatial variance on biological soil crusts covering initial soils of post-mining sites in Lower Lusatia, NE Germany. Flora 220:103–116. https://doi.org/10.1016/j.flora.2016.02.012

    Article  Google Scholar 

  16. Patova EN, Kulyugina EE, Deneva SV (2016) Processes of natural soil and vegetation recovery on a worked-out open pit coal mine (Bol’shezemel’skaya tundra). Russ J Ecol 47(3):228–233. https://doi.org/10.1134/S1067413616020119

    Article  Google Scholar 

  17. Marques AR, Couto FR, Silva VC, Fonseca PV, Paiva PRP, Pontes PP, Gomes FCO, Ferreira AM (2017) Biological re-colonization of sub-aerial boundaries of an ‘artificial construction-niche’ contaminated by iron mine tailings: laboratory bioassays. Environ Earth Sci 76:480. https://doi.org/10.1007/s12665-017-6812-5

    Article  CAS  Google Scholar 

  18. Maltsev YI, Didovich SV, Maltseva IA (2017) Seasonal changes in the communities of microorganisms and algae in the litters of tree plantations in the steppe zone. Eurasian Soil Sci 50:935–942. https://doi.org/10.1134/S1064229317060059

    Article  CAS  Google Scholar 

  19. Gypser S, Veste M, Fischer T, Lange P (2016) Infiltration and water retention of biological soil crusts on reclaimed soils of former open-cast lignite mining sites in Brandenburg, north-east Germany. J Hydrol Hydromech 64:1–11. https://doi.org/10.1515/johh-2016-0009

    Article  Google Scholar 

  20. Huang LN, Tang FZ, Song YS, Wan CY, Wang SL, Liu WQ, Shu WS (2011) Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings. FEMS Microbiol Ecol 78:439–450. https://doi.org/10.1111/j.1574-6941.2011.01178.x

    Article  CAS  PubMed  Google Scholar 

  21. Liu M, Zhao XX, Zhan J, Gao Y, Yang GD, Sun QY (2011) Cyanobacterial diversity in biological soil crusts on wastelands of copper mine tailings. Acta Ecol Sin 31(22):6886–6895

    CAS  Google Scholar 

  22. Song Y, Shu W, Wang A, Liu W (2014) Characters of soil algae during primary succession on copper mine dumps. J Soils Sediments 14(3):577–583. https://doi.org/10.1007/s11368-013-0815-y

    Article  CAS  Google Scholar 

  23. Nyenda T, Gwenzi W, Piyo TT, Jacobs SM (2019) Occurrence of biological crusts and their relationship with vegetation on a chronosequence of abandoned gold mine tailings. Ecol Eng 139:105559. https://doi.org/10.1016/j.ecoleng.2019.07.029

    Article  Google Scholar 

  24. Evtekhov VD, Fedorova IA (2004) Mineralogy of technogenic iron ore deposits of the Kryvyi Rih basin. Scientific papers of DonNTU Series: “The Mining and Geology” 81:26–29

  25. Sherstyuk NP (2011) Hydrochemistry of reservoirs of tailings of the Kryvyi Rih iron ore basin. Hydrol Hydrochem Hydroecol 2:90–101

    Google Scholar 

  26. Gubina VG, Zaborovskiy VS (2015) Features of the material composition of wastes from the enrichment of ferrous quartzites of Kryvbas. Geochem Ore Form 35:56–62

    Article  Google Scholar 

  27. Marynych OM, Lan’ko AI, Shcherban’ MI, Tyshchenko PG (1982) Physical geography of the Ukrainian SSR. Graduate School, Kyiv

    Google Scholar 

  28. Starmach K (1963) Flora SlodkowodnaPolski. Rosliny Slodkowodne. WstepOgólny I Zarys Method Badania. PanstwoweWyd-woNauk, Warszawa

    Google Scholar 

  29. Bischoff HW, Bold HC (1963) Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. University of Texas Publication, Austin

    Google Scholar 

  30. Kotai J (1972) Instructions for preparation of modified nutrient solution Z8 for algae. Norwegian Institute for Water Research, Oslo

    Google Scholar 

  31. Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14. https://doi.org/10.1111/j.1529-8817.1972.tb03995.x

    Article  CAS  Google Scholar 

  32. Gaysina LA, Fazlutdinova AI, Kabirov RR (2008) Modern methods of isolation and cultivation of algae. BGPU, Ufa

    Google Scholar 

  33. Ettl H, Gärtner G (1995) Syllabus der Boden-. Gustav Fischer Verlag, Stuttgart and New York, Luft und Flechtenalgen

    Google Scholar 

  34. Ettl H, Gärtner, G (2014) Syllabus der Boden-, Luft und Flechtenalgen. 2 Aufl, Springer Spektrum, Berlin, Heidelberg

  35. Ettl H (1978) Xanthophyceae 1. In: Ettl H, Gerloff J, Heynig H (eds) Süsswasserflora von Mitteleuropa. Band 3, Gustav Fischer Verlag, Stuttgart and New York

  36. Ettl H (1983) Chlorophyta I (Phytomonadina). In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Band 9, Gustav Fischer Verlag, Stuttgart and New York

  37. Ettl H, Gärtner G (1988) Tetrasporales, Chlorococcales, Gloeodendrales, Chlorophyta II. In: Ettl H, Gerloff J, Heynig H (eds), Süswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart

  38. Ettl H, Gärtner G (1988) Chlorophyta II, Tetrasporales, Chlorococcales, Gloeodendrales. In: Ettl H et al. (eds), Süßwasserflora von Mitteleuropa 10:436. Gustav Fischer Verlag, Stuttgart

  39. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae. 2/1, Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart and New York

  40. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Süßwasserflora von Mitteleeuropa. Band 2/2. Gustav Fisher Verlag, Jena

  41. Komárek J (2013) Cyanoprokaryota. 3rd Part, Heterocytous Genera. Springer Spectrum, Berlin, Heidelberg

  42. Komárek J, Anagnostidis K (2005) Cyanoprokaryota. 2rd Part, Oscillatoriales. Springer Spektrum, Heidelberg

  43. Frey W (2015) Syllabus of plant families – A. Engler’s Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic eukaryotic Algae. Schweizerbart Science Publishers, Stuttgart, Germany

  44. Sokolov AV, Askinazi DL (1965) Agrochemical methods of soil studies. Nauka, Moscow

    Google Scholar 

  45. Maltseva IA, Maltsev YI (2020) Diversity of cyanobacteria and algae in dependence to forest-forming tree species and properties rocks of dump. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-02868-w

    Article  Google Scholar 

  46. Samofalova IA, Rogiznaya YuA (2013) Laboratory and practical classes in the chemical analysis of soils: a tutorial. Publishing house of FSBEI HPE Perm State Agricultural Academy, Perm

    Google Scholar 

  47. Tarchevsky VV, Shtina EA (1967) Development of algae on industrial dumps. The current state and prospects of studying soil algae in the USSR: proceedings of the interuniversity conference, Kirov, pp 146–150

  48. Shmidt VM (1984) Mathematical methods in botany: tutorial. LU Publishing House, Leningrad, Allowance

    Google Scholar 

  49. Novichkova-Ivanova LN (1980) Soil algae of phytocenoses of the Sahara-Gobbian desert region. Nauka, Leningrad

    Google Scholar 

  50. Spence I, Lewandowsky S (1989) Robust multidimensional scaling. Psychometrika 54(3):501–513. https://doi.org/10.1007/BF02294632

    Article  Google Scholar 

  51. Oksanen J (2015) Vegan: an introduction to ordination. https://cran.r-project.org/web/packages/vegan/vignettes/intro-vegan.pdf

  52. R Core Team (2018) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/

  53. Cabala J, Rahmonov O, Jablonska M, Teper E (2011) Soil algal colonization and its ecological role in an environment polluted by past Zn-Pb mining and smelting activity. Water Air Soil Pollut 215:339–348. https://doi.org/10.1007/s11270-010-0482-1

    Article  CAS  Google Scholar 

  54. Baranova OO (2008) Soil algae of first succession on iron-stone dumps of Krivoy Rog. Ecology and noospherology 19:139–142

    Google Scholar 

  55. Trecińska M, Pawlik-Skowrońska B (2008) Soil algal communities inhibiting zinc and lead mine spoils. J Appl Phycol 20:341–348

    Article  Google Scholar 

  56. Lukešová A (2001) Soil algae in brown coal and lignite post-mining areas in Central Europe (Czech Republic and Germany). Restorat Ecol 9:341–350. https://doi.org/10.1046/j.1526-100X.2001.94002.x

    Article  Google Scholar 

  57. Spröte R, Fischer T, Veste M, Raab T, Wiehe W, Lange P, Bens O, Hüttl RF (2010) Biological topsoil crusts at early successional stages on Quaternary substrates dumped by mining in Brandenburg, NE Germany. Géomorphol. Relief, Process, Environ 16:359–370. https://doi.org/10.4000/geomorphologie.8083

    Article  Google Scholar 

  58. Redkina VV, Korneykova MV, Shalygina RR (2020) Microorganisms of the technogenic landscapes: the case of nepheline-containing sands, the Murmansk Region. In: Frank-Kamenetskaya O, Vlasov D, Panova E, Lessovaia S (eds) Processes and phenomena on the boundary between biogenic and abiogenic nature. Lecture Notes in Earth System Sciences, Springer, Cham, pp 561–579

    Chapter  Google Scholar 

  59. Martynova EA (1989) Ecological aspects of the formation of algal groups on the dumps of dolomite mining in Donbass. Dissertation, Dnepropetrovsk

  60. Shekhovtseva OG, Mal’tseva IA, (2015) Physical, chemical, and biological properties of soils in the city of Mariupol. Ukraine Eurasian Soil Sci 48(12):1393–1400. https://doi.org/10.1134/S1064229315120145

    Article  CAS  Google Scholar 

  61. Seiderer T, Venter A, Wyk F, Levanets A, Jordaan A (2017) Growth of soil algae and cyanobacteria on gold mine tailings material. S Afr J Sci 113(11–12):1–6. https://doi.org/10.17159/sajs.2017/20160384

    Article  CAS  Google Scholar 

  62. Dubovik IE, Kireeva NA, Zakirova ZR, Klimina IP (2008) Macroscopic growths of algae and accompanying micromycetes. Algology 18(1):51–57

    Google Scholar 

  63. Dhar A, Comeau PG, Naeth MA, Pinno BD, Vassov R (2020) Plant community development following reclamation of oil sands mines using four cover soil types in northern Alberta. Restorat Ecol 28(1):82–92. https://doi.org/10.1111/rec.13039

    Article  Google Scholar 

  64. Zhang P, Huang L, Hu YG, Zhao Y, Wu YC (2016) Nitrogen fixation potential of biological soil crusts in Heidaigou open coal mine, Inner Mongolia, China. Ying Yong Sheng Tai Xue Bao 27(2):436–444

    PubMed  Google Scholar 

  65. Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological Studies (Analysis and Synthesis). Springer, Berlin, Heidelberg, 150:3–30. https://doi.org/10.1007/978-3-642-56475-8_1

  66. Wu L, Zhang Y (2018) Precipitation and soil particle size co-determine spatial distribution of biological soil crusts in the Gurbantunggut Desert, China. J Arid Land 10:701–711. https://doi.org/10.1007/s40333-018-0065-3

    Article  Google Scholar 

  67. Lukešova A, Komarek J (1987) Succession of soil algae on dumps from strip coal-mining in the Most Region (Czechoslovakia). Folia Geobot Phytotax 22:355–362

    Article  Google Scholar 

  68. Maltsev YI, Maltseva IA, Solonenko AN, Bren AG (2017) Use of soil biota in the assessment of the ecological potential of urban soils. Biosyst Divers 25:257–262. https://doi.org/10.15421/011739

    Article  Google Scholar 

  69. Shcherbyna VV, Maltseva IA, Maltsev YI, Solonenko AN (2017) Post-pyrogenic changes in vegetation cover and biological soil crust in steppe ecosystems. Regul Mech Biosys 8(4):633–638. https://doi.org/10.15421/021797

    Article  Google Scholar 

  70. Maltsev Y, Maltseva S, Kociolek JP, Jahn R, Kulikovskiy M (2021) Biogeography of the cosmopolitan terrestrial diatom Hantzschia amphioxys sensu lato based on molecular and morphological data. Sci Rep 11:4266. https://doi.org/10.1038/s41598-021-82092-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Komáromy ZP (1976) Soil algal growth types as edaphic adaptations in Hungarian forest and grass steppe ecosystems. Acta Bot Acad Sci Hung 22:373–379

    Google Scholar 

  72. Kremer B, Kaźmierczak J, Środoń J (2018) Cyanobacterial-algal crusts from Late Ediacaran paleosols of the East European Craton. Precambrian Res 305:236–246. https://doi.org/10.1016/j.precamres.2017.12.018

    Article  CAS  Google Scholar 

  73. Orlekowsky T, Venter A, van Wyk F, Levanets A (2013) Cyanobacteria and algae of gold mine tailings in the Northwest Province of South Africa. Nova Hedwigia 97:281–294. https://doi.org/10.1127/0029-5035/2013/0117

    Article  Google Scholar 

  74. Maltseva IA (2009) Soil algae of the forests of steppe area of Ukraine. Lux, Melitopol

    Google Scholar 

Download references

Funding

Work with cyanobacteria for morphological analysis and curation under Yevhen Maltsev was supported by Russian Foundation for Basic Research according to the project № 19-04-00326 and by framework of the state assignment (theme AAAA–A19–119041190086–6) for finishing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the conception and design or data acquisition and analysis, and drafting or critical revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yevhen Maltsev.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltsev, Y., Maltseva, S. & Maltseva, I. Diversity of Cyanobacteria and Algae During Primary Succession in Iron Ore Tailing Dumps. Microb Ecol 83, 408–423 (2022). https://doi.org/10.1007/s00248-021-01759-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01759-y

Keywords

Navigation