Skip to main content

Advertisement

Log in

Temporal Variation in the Microbiome of Tropical and Temperate Octocorals

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacterial members of the coral holobiont play an important role in determining coral fitness. However, most knowledge of the coral microbiome has come from reef-building scleractinian corals, with far less known about the nature and importance of the microbiome of octocorals (subclass Octocorallia), which contribute significantly to reef biodiversity and functional complexity. We examined the diversity and structure of the bacterial component of octocoral microbiomes over summer and winter, with a focus on two temperate (Erythropodium hicksoni, Capnella gaboensis; Sydney Harbour) and two tropical (Sinularia sp., Sarcophyton sp.; Heron Island) species common to reefs in eastern Australia. Bacterial communities associated with these octocorals were also compared to common temperate (Plesiastrea versipora) and tropical (Acropora aspera) hard corals from the same reefs. Using 16S rRNA amplicon sequencing, bacterial diversity was found to be heterogeneous among octocorals, but we observed changes in composition between summer and winter for some species (C. gaboensis and Sinularia sp.), but not for others (E. hicksoni and Sarcophyton sp.). Bacterial community structure differed significantly between all octocoral species within both the temperate and tropical environments. However, on a seasonal basis, those differences were less pronounced. The microbiomes of C. gaboensis and Sinularia sp. were dominated by bacteria belonging to the genus Endozoicomonas, which were a key conserved feature of their core microbiomes. In contrast to previous studies, our analysis revealed that Endozoicomonas phylotypes are shared across different octocoral species, inhabiting different environments. Together, our data demonstrates that octocorals harbour a broad diversity of bacterial partners, some of which comprise ‘core microbiomes’ that potentially impart important functional roles to their hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Methods’ Raw data files in FASTQ format were deposited into the NCBI Sequence Read Archive (SRA) and can be accessed under the bioproject number PRJNA656354.

Code Availability

Not applicable.

References

  1. McFadden CS, Sánchez JA, France SC (2010) Molecular phylogenetic insights into the evolution of octocorallia: a review.  Integr  comp Biol. pp 389–410. https://doi.org/10.1093/icb/icq056

  2. Fabricius K, Alderslade P (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the central-west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science, Townsville, p 14

  3. Jeng MS, Huang HD, Dai CF et al (2011) Sclerite calcification and reef-building in the fleshy octocoral genus Sinularia (Octocorallia: Alcyonacea). Coral Reefs 30:925–933. https://doi.org/10.1007/s00338-011-0765-z

    Article  Google Scholar 

  4. Sanchez JAA, Zea S, Diaz JM (1998) Patterns of octocoral and black coral distribution in the oceanic barrier reef-complex of Providencia Island, Southwestern Caribbean. Caribb J Sci 34:250–264 

  5. De’Ath G, Fabricius KE, Sweatman H, Puotinen M, (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A 109:17995–17999. https://doi.org/10.1073/pnas.1208909109

    Article  Google Scholar 

  6. Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10. https://doi.org/10.3354/meps243001

    Article  Google Scholar 

  7. Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol 70:317–340. https://doi.org/10.1146/annurev-micro-102215-095440

    Article  CAS  PubMed  Google Scholar 

  8. Rädecker N, Pogoreutz C, Voolstra CR et al (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol 23:490–497

    Article  PubMed  Google Scholar 

  9. Raina JB, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75:3492–3501. https://doi.org/10.1128/AEM.02567-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Siboni N, Ben-Dov E, Sivan A, Kushmaro A (2008) Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ Microbiol 10:2979–2990. https://doi.org/10.1111/j.1462-2920.2008.01718.x

    Article  CAS  PubMed  Google Scholar 

  11. Ceh J, Raina JB, Soo RM et al (2012) Coral-bacterial communities before and after a coral mass spawning event on Ningaloo Reef. PLoS ONE 7(5):e36920. https://doi.org/10.1371/journal.pone.0036920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Putnam HM, Barott KL, Ainsworth TD, Gates RD (2017) The vulnerability and resilience of reef-building corals. Curr Biol 27:R528–R540

    Article  CAS  PubMed  Google Scholar 

  13. Peixoto RS, Rosado PM, Leite DCA et al (2017) Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol 8:341. https://doi.org/10.3389/fmicb.2017.00341

  14. Blackall LL, Wilson B, Van Oppen MJH (2015) Coral-the world’s most diverse symbiotic ecosystem. Mol Ecol 24:5330–5347

    Article  PubMed  Google Scholar 

  15. Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2:350–363. https://doi.org/10.1038/ismej.2007.112

    Article  CAS  PubMed  Google Scholar 

  16. Witt V, Wild C, Anthony KRN et al (2011) Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef. Environ Microbiol 13:2976–2989. https://doi.org/10.1111/j.1462-2920.2011.02571.x

    Article  CAS  PubMed  Google Scholar 

  17. Lee STM, Davy SK, Tang SL et al (2015) Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiol Ecol 91(12):fiv142. https://doi.org/10.1093/femsec/fiv142

    Article  CAS  PubMed  Google Scholar 

  18. Gajigan AP, Diaz LA, Conaco C (2017) Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. Microbiol Open 72:e00478-e00411. https://doi.org/10.1002/mbo3.478

  19. Huggett MJ, Apprill A (2019) Coral microbiome database: integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ Microbiol Rep 11:372–385. https://doi.org/10.1111/1758-2229.12686

    Article  PubMed  Google Scholar 

  20. Hernandez-Agreda A, Gates RD, Ainsworth TD (2017) Defining the core microbiome in corals’ microbial soup. Trends Microbiol 25:125–140

    Article  CAS  PubMed  Google Scholar 

  21. Ainsworth TD, Krause L, Bridge T et al (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J 9:2261–2274. https://doi.org/10.1038/ismej.2015.39

    Article  CAS  Google Scholar 

  22. Thornhill DJ, Fitt WK, Schmidt GW (2006) Highly stable symbioses among western Atlantic brooding corals. Coral Reefs 25:515–519. https://doi.org/10.1007/s00338-006-0157-y

    Article  Google Scholar 

  23. Lema KA, Willis BL, Bourne DG (2014) Amplicon pyrosequencing reveals spatial and temporal consistency in diazotroph assemblages of the Acropora millepora microbiome. Environ Microbiol 16:3345–3359. https://doi.org/10.1111/1462-2920.12366

    Article  CAS  PubMed  Google Scholar 

  24. Pogoreutz C, Rädecker N, Cárdenas A et al (2018) Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol Evol 8:2240–2252. https://doi.org/10.1002/ece3.3830

    Article  PubMed  PubMed Central  Google Scholar 

  25. Epstein HE, Torda G, van Oppen MJH (2019) Relative stability of the Pocillopora acuta microbiome throughout a thermal stress event. Coral Reefs 38:373–386. https://doi.org/10.1007/s00338-019-01783-y

    Article  Google Scholar 

  26. Glasl B, Herndl GJ, Frade PR (2016) The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J 10:2280–2292. https://doi.org/10.1038/ismej.2016.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lema KA, Clode PL, Kilburn MR et al (2016) Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora. ISME J 10:1804–1808. https://doi.org/10.1038/ismej.2015.229

    Article  CAS  PubMed  Google Scholar 

  28. Thurber RV, Willner-Hall D, Rodriguez-Mueller B et al (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163. https://doi.org/10.1111/j.1462-2920.2009.01935.x

    Article  CAS  Google Scholar 

  29. Reshef L, Koren O, Loya Y et al (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073. https://doi.org/10.1111/j.1462-2920.2006.01148.x

    Article  CAS  PubMed  Google Scholar 

  30. Robertson V, Haltli B, McCauley E et al (2016) Highly variable bacterial communities associated with the octocoral Antillogorgia elisabethae. Microorganisms 4:23. https://doi.org/10.3390/microorganisms4030023

    Article  CAS  PubMed Central  Google Scholar 

  31. Gray MA, Stone RP, Mclaughlin MR, Kellogg CA (2011) Microbial consortia of gorgonian corals from the Aleutian islands. FEMS Microbiol Ecol 76:109–120. https://doi.org/10.1111/j.1574-6941.2010.01033.x

    Article  CAS  PubMed  Google Scholar 

  32. Penn K, Wu D, Eisen JA, Ward N (2006) Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Appl Environ Microbiol 72:1680–1683. https://doi.org/10.1128/AEM.72.2.1680-1683.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holm JB, Heidelberg KB (2016) Microbiomes of Muricea californica and M. fruticosa: comparative analyses of two co-occurring Eastern Pacific Octocorals. Front Microbiol 7:917. https://doi.org/10.3389/fmicb.2016.00917

  34. Van de Water JAJM, Melkonian R, Voolstra CR et al (2017) Comparative assessment of Mediterranean gorgonian-associated microbial communities reveals conserved core and locally variant bacteria. Microb Ecol 73:466–478. https://doi.org/10.1007/s00248-016-0858-x

    Article  CAS  Google Scholar 

  35. Osman EO, Suggett DJ, Voolstra CR et al (2020) Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome 8:1–16. https://doi.org/10.1186/s40168-019-0776-5

    Article  CAS  Google Scholar 

  36. Bayer T, Arif C, Ferrier-Pagès C et al (2013) Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini. Mar Ecol Prog Ser 479:75–84. https://doi.org/10.3354/meps10197

    Article  CAS  Google Scholar 

  37. Cleary DFR, Polónia & ARM, Reijnen & BT, et al (2020) Prokaryote communities inhabiting endemic and newly discovered sponges and octocorals from the Red Sea. Springer. https://doi.org/10.1007/s00248-019-01465-w

    Article  Google Scholar 

  38. Van De Water JAJM, Allemand D, Ferrier-Pagès C (2018) Host-microbe interactions in octocoral holobionts - recent advances and perspectives. Microbiome 6:1–28. https://doi.org/10.1186/s40168-018-0431-6

    Article  Google Scholar 

  39. Goldsmith DB, Kellogg CA, Morrison CL et al (2018) Comparison of microbiomes of cold-water corals Primnoa pacifica and Primnoa resedaeformis, with possible link between microbiome composition and host genotype. Sci Rep 8:12383. https://doi.org/10.1038/s41598-018-30901-z

  40. La Rivière M, Roumagnac M, Garrabou J, Bally M (2013) Transient shifts in bacterial communities associated with the temperate gorgonian Paramuricea clavata in the Northwestern Mediterranean Sea. PLoS ONE 8(2):e57385. https://doi.org/10.1371/journal.pone.0057385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van de Water JAJM, Voolstra CR, Rottier C et al (2018) Seasonal stability in the microbiomes of temperate gorgonians and the red coral Corallium rubrum across the Mediterranean Sea. Microb Ecol 75:274–288. https://doi.org/10.1007/s00248-017-1006-y

    Article  PubMed  Google Scholar 

  42. Pollock FJ, McMinds R, Smith S et al (2018) Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun 9:1–13. https://doi.org/10.1038/s41467-018-07275-x

    Article  CAS  Google Scholar 

  43. Keller-Costa T, Lago-Lestón A, Saraiva JP et al (2021) Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals. Microbiome 9:1–21. https://doi.org/10.1186/S40168-021-01031-Y

    Article  Google Scholar 

  44. Correa H, Haltli B, Duque C, Kerr R (2013) Bacterial communities of the gorgonian octocoral Pseudopterogorgia elisabethae. Microb Ecol 66:972–985. https://doi.org/10.1007/s00248-013-0267-3

    Article  PubMed  Google Scholar 

  45. Wessels W, Sprungala S, Watson SA, et al (2017) The microbiome of the octocoral Lobophytum pauciflorum: minor differences between sexes and resilience to short-term stress. FEMS Microbiol Ecol 93:fix013. https://doi.org/10.1093/femsec/fix013

  46. McCauley EP, Haltli B, Correa H, Kerr RG (2016) Spatial and temporal investigation of the microbiome of the Caribbean octocoral Erythropodium caribaeorum. FEMS Microbiol Ecol 92:1–10. https://doi.org/10.1093/femsec/fiw147

    Article  CAS  Google Scholar 

  47. Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR (2016) Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol Biotechnol 100:8315–8324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Neave MJ, Rachmawati R, Xun L et al (2017) Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J 11:186–200. https://doi.org/10.1038/ismej.2016.95

    Article  PubMed  Google Scholar 

  49. Bayer T, Neave MJ, Alsheikh-Hussain A et al (2013) The microbiome of the red sea coral stylophora pistillata is dominated by tissue-associated endozoicomonas bacteria. Appl Environ Microbiol 79:4759–4762. https://doi.org/10.1128/AEM.00695-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maher RL, Schmeltzer ER, Meiling S et al (2020) Coral microbiomes demonstrate flexibility and resilience through a reduction in community diversity following a thermal stress event. Front Ecol Evol 8:356. https://doi.org/10.3389/FEVO.2020.555698

    Article  Google Scholar 

  51. Dishaw LJ, Flores-Torres J, Lax S et al (2014) The gut of geographically disparate Ciona intestinalis harbors a core microbiota. PLoS ONE 9:e93386. https://doi.org/10.1371/JOURNAL.PONE.0093386

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li Z, Kellogg CA, Gophna U et al (2019) Tissue-specific microbiomes of the Red Sea giant clam Tridacna maxima highlight differential abundance of Endozoicomonadaceae. Front Microbiol 10:2661. https://doi.org/10.3389/fmicb.2019.02661

    Article  Google Scholar 

  53. Forget NL, Juniper SK (2013) Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge. Microbiologyopen 2:259–275. https://doi.org/10.1002/MBO3.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haydon TD, Seymour JR, Suggett DJ (2018) Soft corals are significant DMSP producers in tropical and temperate reefs. Mar Biol 165:1–7. https://doi.org/10.1007/s00227-018-3367-2

    Article  CAS  Google Scholar 

  55. Weber L, DeForce E, Apprill A (2017) Optimization of DNA extraction for advancing coral microbiota investigations. Microbiome 5:18. https://doi.org/10.1186/s40168-017-0229-y

  56. Salter SJ, Cox MJ, Turek EM et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:1–12. https://doi.org/10.1186/s12915-014-0087-z

    Article  CAS  Google Scholar 

  57. Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 18(4):e2584. https://doi.org/10.7717/peerj.2584

    Article  Google Scholar 

  58. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  61. Kahlke T (2018) timkahlke/panbiom 1.0 (Version 1.0). Zenodo. https://doi.org/10.5281/zenodo.1137875

  62. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martin BD, Witten D, Willis AD (2020) Modeling microbial abundances and dysbiosis with beta-binominal regression. Ann appl Stat 14:94–115. https://doi.org/10.1214/19-AOAS1283

  64. van Oppen MJH, Blackall LL (2019) Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol 17:557–567. https://doi.org/10.1038/s41579-019-0223-4

  65. Lee OO, Yang J, Bougouffa S et al (2012) Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing. Appl Environ Microbiol 78:7173–7184. https://doi.org/10.1128/AEM.01111-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shore-Maggio A, Runyon CM, Ushijima B et al (2015) Differences in bacterial community structure in two color morphs of the Hawaiian reef coral Montipora capitata. Appl Environ Microbiol 81:7312–7318. https://doi.org/10.1128/AEM.01935-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sharp KH, Pratte ZA, Kerwin AH et al (2017) Season, but not symbiont state, drives microbiome structure in the temperate coral Astrangia poculata. Microbiome 5:120. https://doi.org/10.1186/s40168-017-0329-8

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kellogg CA (2019) Microbiomes of stony and soft deep-sea corals share rare core bacteria. Microbiome 7:90. https://doi.org/10.1186/s40168-019-0697-3

  69. McCauley M, Jackson CR, Goulet TL (2020) Microbiomes of Caribbean octocorals vary over time but are resistant to environmental change. Front Microbiol 11:1272. https://doi.org/10.3389/fmicb.2020.01272

    Article  PubMed  PubMed Central  Google Scholar 

  70. Woo S, Yang SH, Chen HJ et al (2017) Geographical variations in bacterial communities associated with soft coral Scleronephthya gracillimum. PLoS ONE 12(8):e0183663. https://doi.org/10.1371/journal.pone.0183663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. La Rivière M, Garrabou J, Bally M (2015) Evidence for host specificity among dominant bacterial symbionts in temperate gorgonian corals. Coral Reefs 34:1087–1098. https://doi.org/10.1007/s00338-015-1334-7

    Article  Google Scholar 

  72. Van de Water JAJM, Coppari M, Enrichetti F et al (2020) Local conditions influence the prokaryotic communities associated with the mesophotic black coral Antipathella subpinnata. Front Microbiol 11:2423. https://doi.org/10.3389/fmicb.2020.537813

    Article  Google Scholar 

  73. Chu ND, Vollmer SV (2016) Caribbean corals house shared and host-specific microbial symbionts over time and space. Environ Microbiol Rep 8:493–500. https://doi.org/10.1111/1758-2229.12412

    Article  CAS  PubMed  Google Scholar 

  74. Sunagawa S, Woodley CM, Medina M (2010) Threatened corals provide underexplored microbial habitats. PLoS ONE 5(3):e954. https://doi.org/10.1371/journal.pone.0009554

    Article  CAS  Google Scholar 

  75. Bourne DG, Dennis PG, Uthicke S et al (2013) Coral reef invertebrate microbiomes correlate with the presence of photosymbionts. ISME J 7:1452–1458. https://doi.org/10.1038/ismej.2012.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aurelle D, Pivotto ID, Malfant M et al (2017) Fuzzy species limits in Mediterranean gorgonians (Cnidaria, Octocorallia): inferences on speciation processes. Zool Scr 46:767–778. https://doi.org/10.1111/zsc.12245

    Article  Google Scholar 

  77. Camp EF, Suggett DJ, Pogoreutz C et al (2020) Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment. Coral Reefs 39:701–716. https://doi.org/10.1007/s00338-019-01889-3

    Article  Google Scholar 

  78. Kellogg CA, Lisle JT, Galkiewicz JP (2009) Culture-independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico. Appl Environ Microbiol 75:2294–2303. https://doi.org/10.1128/AEM.02357-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ziegler M, Roik A, Porter A et al (2016) Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar Pollut Bull 105:629–640. https://doi.org/10.1016/j.marpolbul.2015.12.045

    Article  CAS  PubMed  Google Scholar 

  80. Neave MJ, Michell CT, Apprill A, Voolstra CR (2017) Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep 17(7):40579. https://doi.org/10.1038/srep40579

    Article  CAS  Google Scholar 

  81. Ziegler M, Seneca FO, Yum LK et al (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun 8:14213. https://doi.org/10.1038/ncomms14213

  82. Keller-Costa T, Eriksson D, Gonçalves JMS et al (2017) The gorgonian coral Eunicella labiata hosts a distinct prokaryotic consortium amenable to cultivation. FEMS Microbiol Ecol 93:143. https://doi.org/10.1093/FEMSEC/FIX143

    Article  Google Scholar 

  83. Keller-Costa T, Silva R, Lago-Lestón A (2016) Genomic insights into Aquimarina sp. strain EL33, a bacterial symbiont of the gorgonian coral Eunicella labiata. Genome Announc 4:e00855–16. https://doi.org/10.1128/genomea.00855-16

  84. Lee K, Lee H, Choi T et al (2007) Granulosicoccaceae fam. nov., to include Granulosicoccus antarcticus gen. nov., sp. nov., a non-phototrophic, obligately aerobic chemoheterotroph in the order. J Microbiol Biotechnol 17(9):1483–1490

    CAS  PubMed  Google Scholar 

  85. Van De Water JA, Melkonian R, Junca H, Voolstra CR, Reynaud S, Allemand D, Ferrier-Pagès C (2016) Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale. Sci Rep 6:1–7. https://doi.org/10.1038/srep27277

    Article  CAS  Google Scholar 

  86. O’Brien PA, Tan S, Yang C et al (2020) Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J 14:2211–2222. https://doi.org/10.1038/s41396-020-0671-x

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ziegler M, Grupstra CGB, Barreto MM et al (2019) Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun 10(1):3092. https://doi.org/10.1038/s41467-019-10969-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Voolstra CR, Ziegler M (2020) Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. BioEssays 42:2000004. https://doi.org/10.1002/bies.202000004

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff at Heron Island Research Station for their technical support, and Mathieu Pernice, Audrey Commault and Samantha Goyen for their assistance with sampling. We are grateful for the reviewers’ thorough and constructive feedback which has helped improve the quality of this manuscript. Coral samples were collected under the Great Barrier Reef Marine Park permit G17/39149.1 issued to Emma Camp/David Suggett, and Department of Primary Industries permit P15/0042-1.1 issued to Samantha Goyen/David Suggett. Trent Haydon is supported by an Australian Government Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trent D. Haydon.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 104 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haydon, T.D., Suggett, D.J., Siboni, N. et al. Temporal Variation in the Microbiome of Tropical and Temperate Octocorals. Microb Ecol 83, 1073–1087 (2022). https://doi.org/10.1007/s00248-021-01823-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01823-7

Keywords

Navigation