Skip to main content
Log in

Rhodamine bound maghemite as a long-term dual imaging nanoprobe of adipose tissue-derived mesenchymal stromal cells

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In the last few years, magnetically labeled cells have been intensively explored, and non-invasive cell tracking and magnetic manipulation methods have been tested in preclinical studies focused on cell transplantation. For clinical applications, it is desirable to know the intracellular pathway of nanoparticles, which can predict their biocompatibility with cells and the long-term imaging properties of labeled cells. Here, we quantified labeling efficiency, localization, and fluorescence properties of Rhodamine derivatized superparamagnetic maghemite nanoparticles (SAMN-R) in mesenchymal stromal cells (MSC). We investigated the stability of SAMN-R in the intracellular space during a long culture (20 days). Analyses were based on advanced confocal microscopy accompanied by atomic absorption spectroscopy (AAS) and magnetic resonance imaging. SAMN-R displayed excellent cellular uptake (24 h of labeling), and no toxicity of SAMN-R labeling was found. 83% of SAMN-R nanoparticles were localized in lysosomes, only 4.8% were found in mitochondria, and no particles were localized in the nucleus. On the basis of the MSC fluorescence measurement every 6 days, we also quantified the continual decrease of SAMN-R fluorescence in the average single MSC during 18 days. An additional set of analyses showed that the intracellular SAMN-R signal decrease was minimally caused by fluorophore degradation or nanoparticles extraction from the cells, main reason is a cell division. The fluorescence of SAMN-R nanoparticles within the cells was detectable minimally for 20 days. These observations indicate that SAMN-R nanoparticles have a potential for application in transplantation medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahrens ET, Feili-Hariri M, Xu H et al (2003) Receptor-mediated endocytosis of iron oxide nanoparticles provides efficient labeling of dendritic cells for in vivo Mr imaging. Magn Reson Med 49:1006–1013

    Article  CAS  PubMed  Google Scholar 

  • Bernsen MR, Guenoun JG, Van Tiel ST, Krestin GP (2015) Nanoparticles and clinically applicable cell tracking. Brit J Radiol 88:20150375

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang ZK, Liu ZP, Ho JH et al (2012) Amine-surface-modified superparamagnetic iron oxide nanoparticles interfere with differentiation of human mesenchymal stem cells. J Orthop Res 30:1499–1506

    Article  CAS  PubMed  Google Scholar 

  • da Rocha EL, Caramori GF, Rambo CR (2013) Nanoparticle translocation through a lipid bilayer tuned by surface chemistry. Phys Chem Chem Phys 15:2282–2290

    Article  PubMed  Google Scholar 

  • Daldrup-Link HE, Rudelius M, Oostendorp RA et al (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767

    Article  PubMed  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN et al (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966

    Article  CAS  Google Scholar 

  • Desai MP, Labhasetwar V, Walter E et al (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14:1568–1573

    Article  CAS  PubMed  Google Scholar 

  • Farrell E, Wiepolski P, Pavljasevic P (2008) Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo. Biochem Biophys Res Commun 369:1076–1081

    Article  CAS  PubMed  Google Scholar 

  • Figuerola A, Di Corato R, Manna L et al (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62:126–143

    Article  CAS  PubMed  Google Scholar 

  • Havrdova M, Polakova K, Skopalik J et al (2014) Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells. Micron 67:149–154

    Article  CAS  PubMed  Google Scholar 

  • Havrdova M, Hola K, Skopalik J et al (2016) Toxicity of carbon dots—effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 99:238–248

    Article  CAS  Google Scholar 

  • Huang X, Zhang F, Wang H, Niu G, Choi KY, Swierczewska M (2013) Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials 34(7):1772–1780

    Article  CAS  PubMed  Google Scholar 

  • Huang ZY, Li CG, Yang S (2015) Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium. Int J Nanomed 10:1679–1690

    CAS  Google Scholar 

  • Khan MI, Mohammad A, Patil G et al (2012) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33:1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Wei J, Iida R et al (2014) Surface engineering of nanoparticles for therapeutic applications. Polym J 46:460–468

    Article  CAS  Google Scholar 

  • Kostura L, Kraitchman DL, Mackay AM et al (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517

    Article  PubMed  Google Scholar 

  • Lai SM, Tsai TZ, Hsu CY et al (2012) Bifunctional silica-coated superparamagnetic FePt nanoparticles for fluorescence/MR dual imaging. J Nanomater (2012) Art No 631584

  • Lewin M, Carlesso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  CAS  PubMed  Google Scholar 

  • Magro M, Sinigaglia G, Nodari L et al (2012) Charge binding of rhodamine derivative to OH- stabilized nanomaghemite: universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomater 8:2068–2076

    Article  CAS  PubMed  Google Scholar 

  • Medeiros SF, Santos AM, Fessi H, Elaissari A (2011) Stimuli-responsive magnetic particles for biomedical applications. Int J Pharmaceut 403:139–161

    Article  CAS  Google Scholar 

  • Neoh KG, Kang ET (2012) Surface modification of magnetic nanoparticles for stem cell labelling. Soft Matter 8:2057–2069

    Article  CAS  Google Scholar 

  • Owens GJ, Rajendra KS, Farzad F, Mustafa A (2016) Sol–gel based materials for biomedical applications. Prog Mater Sci 77:1–79

    Article  CAS  Google Scholar 

  • Park J, Park S, Ryu S (2014) Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv Healthc Mater 3(2):176–181

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg JT, Sellgren KL, Sachi-Kocher A, Bejarano FC, Baird MA (2013) Magnetic resonance contrast and biological effects of intracellular superparamagnetic iron oxides on human mesenchymal stem cells with long-term culture and hypoxic exposure. Cytotherapy 15(3):307–322

    Article  CAS  PubMed  Google Scholar 

  • Sen T, Sadhu S, Patra A (2007) Surface energy transfer from rhodamine 6G to gold nanoparticles: a spectroscopic ruler. Appl Phys Lett 91:43–104

    Google Scholar 

  • Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94:606–613

    Article  CAS  PubMed  Google Scholar 

  • Sinigaglia G, Magro M, Miotto G et al (2012) Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles. Int J Nanomed 7:2249–2259

    CAS  Google Scholar 

  • Skopalik J, Polakova K, Havrdova M et al (2014) Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist–an initial in vitro study. Int J Nanomed 9:5355–5372

    Article  Google Scholar 

  • Souza CGS, Beck W Jr, Varanda LC (2013) Multifunctional luminomagnetic FePt@ Fe3O4/SiO2/Rhodamine B/SiO2 nanoparticles with high magnetic emanation for biomedical applications. J Nanopart Res 15 Art No 1545

  • Stark WJ (2011) Nanoparticles in biological systems. Angew Chem Int Edit 50:1242–1258

    Article  CAS  Google Scholar 

  • Venerando R, Miotto G, Magro M et al (2013) Magnetic nanoparticles with covalently bound self-assembled protein corona for advanced biomedical applications. J Phys Chem C 117:20320–20331

    Article  CAS  Google Scholar 

  • Verma A, Stellacci F et al (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6:12–21

    Article  CAS  PubMed  Google Scholar 

  • Yang C-Y, Hsiao J-K, Tai M-F et al (2011) Direct labeling of hMSC with SPIO: the long-term influence on toxicity, chondrogenic differentiation capacity, and intracellular distribution. Mol Imaging Biol 13:443–451

    Article  PubMed  Google Scholar 

  • Zehentbauer FM, Moretto C, Stephen R et al (2014) Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects. Spectrochim Acta A Mol Biomol Spectrosc 121:147–151

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Mascheri N, Dharmakumar R et al (2009) Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging. Cytotherapy 11:43–51

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support by Ministry of Education, Youth and Sports  of the Czech Republic (project LO1305), the Operational Program “Education for Competitiveness – European Social Fund” CZ.1.07/2.3.00/20.0155. This work was also supported by the project no. LQ1605 from the National Program of Sustainability II (MEYS CR) and by the project FNUSA-ICRC no. CZ.1.05/1.1.00/02.0123 (OP VaVpI). Support by Ministry of Education of the Czech Republic (LO1212 and LO1305, CZ.1.05/2.1.00/01.0017) and the support by Student Project IGA­PrF­2015­017 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Josef Skopalik or Katerina Polakova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1072 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cmiel, V., Skopalik, J., Polakova, K. et al. Rhodamine bound maghemite as a long-term dual imaging nanoprobe of adipose tissue-derived mesenchymal stromal cells. Eur Biophys J 46, 433–444 (2017). https://doi.org/10.1007/s00249-016-1187-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-016-1187-1

Keywords

Navigation