Skip to main content
Log in

Production of a novel compound, 10,12-dihydroxystearic acid from ricinoleic acid by an oleate hydratase from Lysinibacillus fusiformis

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A recombinant oleate hydratase from Lysinibacillus fusiformis converted ricinoleic acid to a product, whose chemical structure was identified as the novel compound 10,12-dihydroxystearic acid by gas chromatograph/mass spectrometry, Fourier transform infrared, and nuclear magnetic resonance analysis. The reaction conditions for the production of 10,12-dihydroxystearic acid were optimized as follows: pH 6.5, 30 °C, 15 g l−1 ricinoleic acid, 9 mg ml−1 of enzyme, and 4 % (v/v) methanol. Under the optimized conditions, the enzyme produced 13.5 g l−1 10,12-dihydroxystearic acid without detectable byproducts in 3 h, with a conversion of substrate to product of 90 % (w/w) and a productivity of 4.5 g l−1 h−1. The emulsifying activity of 10,12-dihydroxystearic acid was higher than that of oleic acid, ricinoleic acid, stearic acid, and 10-hydroxystearic acid, indicating that 10,12-dihydroxystearic acid can be used as a biosurfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Awang R, Ahmad S, Kang YB (1998) Preparation of dihydroxyfatty acid from oleic acid. In, Malaysian

  • Back KY, Sohn HR, Hou CT, Kim HR (2011) Production of a novel 9,12-dihydroxy-10(E)-eicosenoic acid from eicosenoic acid by Pseudomonas aeruginosa PR3. J Agric Food Chem 59:9652–9657

    Article  PubMed  CAS  Google Scholar 

  • Bae JH, Suh MJ, Kim BS, Hou CT, Lee IJ, Kim IH, Kim HR (2010) Optimal production of 7,10-dihydroxy-8(E)-hexadecenoic acid from palmitoleic acid by Pseudomonas aeruginosa PR3. New Biotechnology 27:352–357

    Article  PubMed  CAS  Google Scholar 

  • Bagby M, Calson K (1989) Chemical and biological conversion of soybean oil for industrial products. Horwood, Chichester, pp 301–317

    Google Scholar 

  • Bevers LE, Pinkse MW, Verhaert PD, Hagen WR (2009) Oleate hydratase catalyzes the hydration of a nonactivated carbon–carbon bond. J Bacteriol 191:5010–5012

    Article  PubMed  CAS  Google Scholar 

  • Chen TC, Ju YH (2001) An improved fractional crystallization method for the enrichment of γ-linolenic acid in borage oil fatty acid. Ind EngChem Res 40:3781–3784

    Article  CAS  Google Scholar 

  • Hou CT (1994a) Conversion of linoleic acid to 10-hydroxy-12(Z)-octadecenoic acid by Flavobacterium sp. (NRRL B-14859). J Am Oil Chem Soc 71:975–978

    Article  CAS  Google Scholar 

  • Hou CT (1994b) Production of 10-ketostearic acid from oleic acid by Flavobacterium sp. strain DS5 (NRRL B-14859). Appl Environ Microbiol 60:3760–3763

    PubMed  CAS  Google Scholar 

  • Hou CT (1995a) Is strain DS5 hydratase a C-10 positional specific enzyme? Identification of bioconversion products from a- and g-linolenic acids by Flavibacterium sp. DS5. J Ind Microbiol 14:31–34

    Article  Google Scholar 

  • Hou CT (1995b) Production of hydroxy fatty acids from unsaturated fatty acids by Flavobacterium sp. DS5 hydratase, a C-10 positional- and cis unsaturation-specific enzyme. J Am Oil Chem Soc 72:1265–1270

    Article  CAS  Google Scholar 

  • Hou CT (2009) Biotechnology for fats and oils: new oxygenated fatty acids. New Biotechnol 26:2–10

    Article  CAS  Google Scholar 

  • Hou CT, Bagby MO (1991) Production of a new compound, 7,10-dihydroxy-8-(E)-octadecenoic acid from oleic acid by Pseudomonas sp. PR3. J Ind Microbiol 7:123–129

    Article  CAS  Google Scholar 

  • Hou CT, Bagby MO, Plattner RD, Koritala S (1991) A novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid by bioconversion. J Am Oil Chem Soc 68:99–101

    Article  CAS  Google Scholar 

  • Hudson JA, Mackenzie CA, Joblin KN (1995) Conversion of oleic acid to 10-hydroxystearic acid by two species of ruminal bacteria. Appl Microbiol Biotechnol 44:1–6

    Article  PubMed  CAS  Google Scholar 

  • Joo YC, Jeong KW, Yeom SJ, Kim YS, Kim Y, Oh DK (2012a) Biochemical characterization and FAD-binding analysis of oleate hydratase from Macrococcus caseolyticus. Biochimie 94:907–915

    Article  PubMed  CAS  Google Scholar 

  • Joo YC, Seo ES, Kim YS, Kim KR, Park JB, Oh DK (2012b) Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia. J Biotechnol 158:17–23

    Article  PubMed  CAS  Google Scholar 

  • Kim BN, Joo YC, Kim YS, Kim KR, Oh DK (2012) Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis. Appl Microbiol Biotechnol 95:929–937

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Gardner HW, Hou CT (2000a) 10(S)-Hyroxy-8(E)-octadecenoic acid, an intermediate in the conversion of oleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid. J Am Oil Chem Soc 77:95–99

    Article  CAS  Google Scholar 

  • Kim H, Kuo TM, Hou CT (2000b) Production of 10,12-dihydroxy-8(E)-octadecenoic acid, an intermediate in the conversion of ricinoleic acid to 7,10,12-trihydroxy-8(E)-octadecenoic acid by Pseudomonas aeruginosa PR3. J Ind Microbiol 24:167–172

    Article  CAS  Google Scholar 

  • Kishimoto Y, Radin NS (1963) Occurrence of 2-hydroxy fatty acids in animal tissues. J Lipid Res 4:139–143

    PubMed  CAS  Google Scholar 

  • Kitamoto D, Ikegami T, Suzuki GT, Sasaki A, Takeyama YI, Idemoto Y, Koura N, Yanagishita H (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol Lett 23:1709–1714

    Article  CAS  Google Scholar 

  • Knothe G, Bagby MO, Peterson RE, Hou CT (1992) 7,10-Dihydroxy-8(E)-octadecenoic acid: Stereochemistry and a novel derivative, 7,10-dihydroxyoctadecanoic acid. J Am Oil Chem Soc 69:367–371

    Article  CAS  Google Scholar 

  • Kuo TM, Manthey LK, Hou CT (1998) Fatty acid bioconversions by Pseudomonas aeruginosa PR3. J Am Oil Chem Soc 75:875–879

    Article  CAS  Google Scholar 

  • Mercade E, Robert M, Espuny MJ, Bosch MP, Manresa MA, Parra JL, Guinea J (1988) New surfactant isolated from Pseudomonas 42A2. J Am Oil Chem Soc 65:1915–1916

    Article  CAS  Google Scholar 

  • Morris LJ (1968) Fatty acid composition of Claviceps species. Occurrence of (+)-threo-9, 10-dihydroxystearic acid. Lipids 3:260–261

    Article  PubMed  CAS  Google Scholar 

  • Naughton FC (1974) Production, chemistry and commercial applications of various chemicals from castor oil. J Am Oil Chem Soc 51:65–71

    Article  CAS  Google Scholar 

  • Paige M, Saprito MS, Bunyan DA, Shim YM (2009) HPLC quantification of 5-hydroxyeicosatetraenoic acid in human lung cancer tissues. Biomed Chromatogr 23:817–821

    Article  PubMed  CAS  Google Scholar 

  • Parra JL, Pastor J, Comelles F, Manresa MA, Bosch MP (1990) Studies of biosurfactants obtained from olive oil. Tenside Surf Det 27:302–306

    CAS  Google Scholar 

  • Romero-Guido C, Belo I, Ta TM, Cao-Hoang L, Alchihab M, Gomes N, Thonart P, Teixeira JA, Destain J, Wache Y (2011) Biochemistry of lactone formation in yeast and fungi and its utilisation for the production of flavour and fragrance compounds. Appl Microbiol Biotechnol 89:535–547

    Article  PubMed  CAS  Google Scholar 

  • Rosberg-Cody E, Liavonchanka A, Gobel C, Ross RP, O’Sullivan O, Fitzgerald GF, Feussner I, Stanton C (2011) Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection. BMC Biochem 12:9–20

    Article  PubMed  CAS  Google Scholar 

  • Smolinske SC (1992) Handbook of food, drug, and cosmetic excipients. CRC, New York, pp 247–248

    Google Scholar 

  • Volkov A, Liavonchanka A, Kamneva O, Fiedler T, Goebel C, Kreikemeyer B, Feussner I (2010) Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J Biol Chem 285:10353–10361

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from the Bio-industry Technology Development Program, Ministry for Food, Agriculture, Forestry and Fisheries (No. 112002-3) and a grant from the Korea Healthcare Technology R&D Project, Ministry for Health & Welfare, Republic of Korea (No. 2012-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deok-Kun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, MH., Kim, KR. & Oh, DK. Production of a novel compound, 10,12-dihydroxystearic acid from ricinoleic acid by an oleate hydratase from Lysinibacillus fusiformis . Appl Microbiol Biotechnol 97, 8987–8995 (2013). https://doi.org/10.1007/s00253-013-4728-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4728-x

Keywords

Navigation