Skip to main content
Log in

Development of a novel uric-acid-responsive regulatory system in Escherichia coli

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel uric-acid-responsive regulatory system was developed in Escherichia coli by adapting the HucR-related regulatory elements from Deinococcus radiodurans into E. coli. The induction performance of this system was compared to the performance of both the pBAD and pET systems. Our novel regulatory system was induced in a dose-dependent manner in the presence of uric acid and exhibited low basal expression in its absence. The system was characterized by a wide dynamic range of induction, being compatible with various E. coli strains and not requiring genomic modifications of the bacterial host. E. coli DH5α and DH10B were the most suitable host strains for optimal performance of this system. In conclusion, we developed a regulatory system with potential for applications in both recombinant protein expression and metabolic optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aaron N, Milton W (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci U S A 43:553–566

    Article  Google Scholar 

  • Amann E, Brosius J, Ptashne M (1983) Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 25:167–178

    Article  CAS  PubMed  Google Scholar 

  • Amann E, Ochs B, Abel K-J (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69:301–315

    Article  CAS  PubMed  Google Scholar 

  • Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  PubMed  Google Scholar 

  • Barrick D, Villanueba K, Childs J, Kalil R, Schneider TD, Lawrence CE, Gold L, Stormo GD (1994) Quantitative analysis of ribosome binding sites in E. coli. Nucleic Acids Res 22:1287–1295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224

    Article  CAS  PubMed  Google Scholar 

  • Blazeck J, Alper HS (2013) Promoter engineering: recent advances in controlling transcription at the most fundamental level. Biotechnol J 8:46–58

    Article  CAS  PubMed  Google Scholar 

  • Carrier TA, Keasling JD (1999) Investigating autocatalytic gene expression systems through mechanistic modeling. J Theor Biol 201:25–36

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Morel L, Le François T, Bourque D, Bourget L, Groleau D, Massie B, Míguez CB (2010) Novel, versatile, and tightly regulated expression system for Escherichia coli strains. Appl Environ Microbiol 76:5058–5066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cox MM, Battista JR (2005) Deinococcus radiodurans - the consummate survivor. Nat Rev Microbiol 3:882–892

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Figge J, Wright C, Collins CJ, Roberts TM, Livingston DM (1988) Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli lac repressor in monkey cells. Cell 52:713–722

    Article  CAS  PubMed  Google Scholar 

  • Guan L, Liu Q, Li C, Zhang Y (2013) Development of a Fur-dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis. BMC Biotechnol 13:25–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guido NJ, Wang X, Adalsteinsson D, McMillen D, Hasty J, Cantor CR, Elston TC, Collins JJ (2006) A bottom-up approach to gene regulation. Nature 439:856–860

    Article  CAS  PubMed  Google Scholar 

  • Gupta JC, Jaisani M, Pandey G, Mukherjee KJ (1999) Enhancing recombinant protein yields in Escherichia coli using the T7 system under the control of heat inducible λPL promoter. J Biotechnol 68:125–134

    Article  CAS  PubMed  Google Scholar 

  • Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hannig G, Makrides SC (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16:54–60

    Article  CAS  PubMed  Google Scholar 

  • Harley C, Reynolds RP (1987) Analysis of E. coli promoter sequences. Nucleic Acids Res 5:2343–2361

    Article  Google Scholar 

  • Hooper DC, Spitsin S, Kean RB, Champion JM, Dickson GM, Chaudhry I, Koprowski H (1998) Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci U S A 95:675–680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karin H, Ruhdal JP (1998) Artificial promoter libraries for selected organisms and promoters derived from such libraries. Patent No. WO1998007846

  • Keasling JD (1999) Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol 17:452–460

    Article  CAS  PubMed  Google Scholar 

  • Khlebnikov A, Keasling JD (2002) Effect of lacY expression on homogeneity of induction from the Ptac and Ptrc promoters by natural and synthetic inducers. Biotechnol Prog 18:672–674

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Keasling JD (2005) A propionate-inducible expression system for enteric bacteria. Appl Environ Microbiol 71:6856–6862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee T, Krupa R, Zhang F, Hajimorad M, Holtz W, Prasad N, Lee S, Keasling J (2011) BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J Biol Eng 5:1–14

    Article  Google Scholar 

  • Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maeda H, Fujita N, Ishihama A (2000) Competition among seven Escherichia coli σ subunits: relative binding affinities to the core RNA polymerase. Nucleic Acids Res 28:3497–3503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nocadello S, Swennen E (2012) The new pLAI (lux regulon based auto-inducible) expression system for recombinant protein production in Escherichia coli. Microb Cell Fact 11:3–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noh K-H, Son J-W, Kim H-J, Oh D-K (2009) Ginsenoside compound K production from ginseng root extract by a thermostable β-glycosidase from Sulfolobus solfataricus. Biosci Biotechnol Biochem 73:316–321

    Article  CAS  PubMed  Google Scholar 

  • Papakostas K, Frillingos S (2012) Substrate selectivity of YgfU, a uric acid transporter from Escherichia coli. J Biol Chem 287:15684–15695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peti W, Page R (2007) Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr Purif 51:1–10

    Article  CAS  PubMed  Google Scholar 

  • Samuelson J (2011) Recent developments in difficult protein expression: a guide to E. coli strains, promoters, and relevant host mutations. In: Evans JTC, Xu M-Q (eds) Heterologous gene expression in E. coli. Humana Press, New York, pp 195–209

    Chapter  Google Scholar 

  • Siegele DA, Hu JC (1997) Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proc Natl Acad Sci U S A 94:8168–8172

  • Stark MJR (1987) Multicopy expression vectors carrying the lac represser gene for regulated high-level expression of genes in Escherichia coli. Gene 51:255–267

    Article  CAS  PubMed  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  PubMed  Google Scholar 

  • Tabor S (2001) Expression using the T7 RNA polymerase/promoter system. In: Ausubel FA, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 16.2.1–16.2.11

    Google Scholar 

  • Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Högbom M, van Wijk KJ, Slotboom DJ, Persson JO, de Gier J-W (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105:14371–14376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilkinson SP, Grove A (2004) HucR, a novel uric acid-responsive member of the MarR family of transcriptional regulators from Deinococcus radiodurans. J Biol Chem 279:51442–51450

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SP, Grove A (2005) Negative cooperativity of uric acid binding to the transcriptional regulator HucR from Deinococcus radiodurans. J Mol Biol 350:617–630

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Baumann U, Reymond J-L (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:115–122

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Ye Mao for his technical assistance in this research. This work was supported by the Ministry of Science and Technology of China Grant 2013CB734003, the National Natural Science Foundation of China Grant 21172095, and the Key Research Program of the Chinese Academy of Sciences Grant KSZD-EW-Z-015-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Yan Tang.

Additional information

Chaoning Liang and Dandan Xiong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Xiong, D., Zhang, Y. et al. Development of a novel uric-acid-responsive regulatory system in Escherichia coli . Appl Microbiol Biotechnol 99, 2267–2275 (2015). https://doi.org/10.1007/s00253-014-6290-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6290-6

Keywords

Navigation