Skip to main content

Advertisement

Log in

An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The excessive emission of flue gas contributes to air pollution, abnormal climate change, global warming, and sea level rises associated with glacial melting. With the ability to utilize NOx as a nitrogen source and to convert solar energy into chemical energy via CO2 fixation, microalgae can potentially reduce air pollution and relax global warming, while also enhancing biomass and biofuel production as well as the production of high-value-added products. This informatics-based review analyzes the trends in the related literature and in patent activity to draw conclusions and to offer a prospective view on the developments of microalgae for industrial flue gas biosequestration. It is revealed that in recent years, microalgal research for industrial flue gas biosequestration has started to attract increasing attention and has now developed into a hot research topic, although it is still at a relatively early stage, and needs more financial and policy support in order to better understand microalgae and to develop an economically viable process. In comparison with onsite microalgal CO2 capture, microalgae-based biological DeNOx appears to be a more realistic and attractive alternative that could be applied to NOx treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgments

This work was supported jointly by the National Program on Key Basic Research Project (2012CB224803), the National Natural Science Foundation of China (31300030, 31270094), the Natural Science Foundation of Hubei Province of China (2013CFA109), Sinopec (S213049), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Y35E05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Rong, J., Chen, H. et al. An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas. Appl Microbiol Biotechnol 100, 2073–2082 (2016). https://doi.org/10.1007/s00253-015-7277-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7277-7

Keywords

Navigation