Skip to main content

Advertisement

Log in

Methods for enhancing cyanobacterial stress tolerance to enable improved production of biofuels and industrially relevant chemicals

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cyanobacteria are photosynthetic prokaryotes that can fix atmospheric CO2 and can be engineered to produce industrially important compounds such as alcohols, free fatty acids, alkanes used in next-generation biofuels, and commodity chemicals such as ethylene or farnesene. They can be easily genetically manipulated, have minimal nutrient requirements, and are quite tolerant to abiotic stress making them an appealing alternative to other biofuel-producing microbes which require additional carbon sources and plants which compete with food crops for arable land. Many of the compounds produced in cyanobacteria are toxic as titers increase which can slow growth, reduce production, and decrease overall biomass. Additionally, many factors associated with outdoor culturing of cyanobacteria such as UV exposure and fluctuations in temperature can also limit the production potential of cyanobacteria. For cyanobacteria to be utilized successfully as biofactories, tolerance to these stressors must be increased and ameliorating stress responses must be enhanced. Genetic manipulation, directed evolution, and supplementation of culture media with antioxidants are all viable strategies for designing more robust cyanobacterial strains that have the potential to meet industrial production goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CO2 :

carbon dioxide

UV:

ultraviolet light

UVR:

ultraviolet radiation

PAR:

photosynthetically active radiation

ROS:

reactive oxygen species

RuBisCO:

ribulose-1,5-bisphosphate carboxylase/oxygenase

PSII:

photosystem II

HSR:

heat shock response

FFA:

free fatty acid

O2 :

superoxide anion

1O2 :

singlet oxygen

H2O2 :

hydrogen peroxide

OH:

hydroxyl radical

PSI:

photosystem I

GB:

glycine betaine

SOD:

superoxide dismutase

SOR:

superoxide reductase

NAC:

N-acetyl-l-cysteine

DNA:

deoxyribonucleic acid

References

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kinoshita M, Inaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125(4):1842–53

  • Anfelt J, Hallström B, Nielsen J, Uhlén M, Hudson EP (2013) Using transcriptomics to improve butanol tolerance of Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 79(23):7419–7427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angermayr SA, Hellingwerf KJ, Teixeira de Mattos MJ (2009) Energy biotechnology with cyanobacteria. Curr Opin Biotechnol 20(3):257–263

    Article  CAS  PubMed  Google Scholar 

  • Angermayr SA, Paszota M, Hellingwerf KJ (2012) Engineering a cyanobacterial cell factory for production of lactic acid. Appl Environ Microbiol 78(19):7098–7106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angermayr SA, Gorchs Rovira A, Hellingwerf KJ (2015) Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol 33(6):352–361

    Article  CAS  PubMed  Google Scholar 

  • Brasil BSAF, de Siqueira FG, Salum TFC, Zanette CM, Spier MR (2017) Microalgae and cyanobacteria as enzyme biofactories. Algal Res 25:76–89

    Article  Google Scholar 

  • Case AE, Atsumi S (2016) Cyanobacterial chemical production. J Biotechnol 231:106–114

    Article  CAS  PubMed  Google Scholar 

  • Cassier-Chauvat C, Chauvat F (2015) Responses to oxidative and heavy metal stresses in cyanobacteria: recent advances. Int J Mol Sci 16(1):871–886

    CAS  Google Scholar 

  • Castielli O, De la Cerda B, Navarro JA, Hervás M, De la Rosa MA (2009) Proteomic analyses of the response of cyanobacteria to different stress conditions. FEBS Lett 583(11):1753–1758

    Article  CAS  PubMed  Google Scholar 

  • Červený J, Sinetova MA, Zavřel T, Los DA (2015) Mechanisms of high temperature resistance of Synechocystis sp. PCC 6803: an impact of histidine kinase 34. Life 5(1):676–699

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaurasia AK, Apte SK (2009) Overexpression of the groESL operon enhances the heat and salinity stress tolerance of the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC7120. Appl Environ Microbiol 75(18):6008–6012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dexter J, Fu PC (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ Sci 2:857–864

    Article  CAS  Google Scholar 

  • Dexter J, Armshaw P, Sheahan C, Pembroke JT (2015) The state of autotrophic ethanol production in cyanobacteria. J Appl Microbiol 119(1):11–24

    Article  CAS  PubMed  Google Scholar 

  • Du W, Liang F, Duan Y, Tan X, Lu X (2013) Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab Eng 19:17–25

    Article  CAS  PubMed  Google Scholar 

  • Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, … Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7(487):487

  • Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Factories 4:36

    Article  Google Scholar 

  • Ferjani A, Mustardy L, Sulpice R, Marin K, Suzuki I, Hagemann M, Murata N (2003) Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol 131(4):1628–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Formighieri C, Melis A (2017) Heterologous synthesis of geranyllinalool, a diterpenol plant product, in the cyanobacterium Synechocystis. Appl Microbiol Biotechnol 101(7):2791–2800

    Article  CAS  PubMed  Google Scholar 

  • Gabbay-Azaria R, Tel-Or E, Schönfeld M (1988) Glycinebetaine as an osmoregulant and compatible solute in the marine cyanobacterium Spirulina subsalsa. Arch Biochem Biophys 264(1):333–339

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5(12):9857–9865

    Article  CAS  Google Scholar 

  • Geng X-M, Liu X, Ji M, Hoffmann WA, Grunden AM, Xiang Q-YJ (2016) Enhancing heat tolerance of the little dogwood Cornus canadensis L. f. with introduction of a superoxide reductase gene from the hyperthermophilic archaeon, Pyrococcus furiosus. Front Plant Sci 7:26

    PubMed  PubMed Central  Google Scholar 

  • George KW, Alonso-Gutierrez J, Keasling JD, Lee TS (2015) Isoprenoid drugs, biofuels, and chemicals—artemisinin, farnesene, and beyond. Adv Biochem Eng Biotechnol 148:355–389

    CAS  PubMed  Google Scholar 

  • Golden SS, Canales SR (2003) Cyanobacterial circadian clocks—timing is everything. Nat Rev Microbiology 1(3):191–199

    Article  CAS  PubMed  Google Scholar 

  • Gombos Z, Wada H, Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc Natl Acad Sci U S A 89(20):9959–9963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronenberg LS, Marcheschi RJ, Liao JC (2013) Next generation biofuel engineering in prokaryotes. Curr Opin Chem Biol 17(3):462–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grunden AM, Jenney FE, Ma K, Ji M, Weinberg MV, Adams WWW (2005) In Vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus. Appl Environ Microbiol 71(3):1522–1530

  • Halfmann C, Gu L, Gibbons W, Zhou R (2014) Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Appl Microbiol Biotechnol 98(23):9869–9877

    Article  CAS  PubMed  Google Scholar 

  • Hanai T, Atsumi S, Liao JC (2007) Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol 73(24):7814–7818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassett DJ, Britigan BE, Svendsen T, Rosen GM, Cohen MS (1987) Bacteria form intracellular free radicals in response to paraquat and streptonigrin: demonstration of the potency of hydroxyl radical. J Biol Chem 262(28):13404–13408

    CAS  PubMed  Google Scholar 

  • He Y-Y, Häder D-P (2002) UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-l-cysteine. J Photochem Photobiol B Biol 66(2):115–124

    Article  CAS  Google Scholar 

  • Hirokawa Y, Suzuki I, Hanai T (2015) Optimization of isopropanol production by engineered cyanobacteria with a synthetic metabolic pathway. J Biosci Bioeng 119(5):585–590

    Article  CAS  PubMed  Google Scholar 

  • Im YJ, Ji M, Lee AM, Boss WF, Grunden AM (2005) Production of a thermostable archaeal superoxide reductase in plant cells. FEBS Lett 579(25):5521–5526

  • Im YJ, Ji M, Lee AM, Killens R, Grunden AM, Boss WF (2009) Expression of Pyrococcus furiosus superoxide reductase in Arabidopsis enhances heat tolerance. Plant Physiol 151(2):893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenney FE, Verhagen MF, Cui X, Adams MW (1999) Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286(5438):306–309

    Article  CAS  PubMed  Google Scholar 

  • Ji X-J, Huang H, Ouyang P-K (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29(3):351–364

    Article  CAS  PubMed  Google Scholar 

  • Johnson TJ, Halfmann C, Zahler JD, Zhou R, Gibbons WR (2016) Increasing the tolerance of filamentous cyanobacteria to next-generation biofuels via directed evolution. Algal Res 18:250–256

    Article  Google Scholar 

  • Kämäräinen J, Knoop H, Stanford NJ, Guerrero F, Akhtar MK, Aro EM et al (2012) Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. J Biotechnol 162(1):67–74

    Article  PubMed  Google Scholar 

  • Kanno M, Carroll AL, Atsumi S (2017) Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria. Nat Commun 8:14724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato A, Takatani N, Ikeda K, Maeda S, Omata T (2017) Removal of the product from the culture medium strongly enhances free fatty acid production by genetically engineered Synechococcus elongatus. Biotechnol Biofuels 10(1):141

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitchener RL (2017) Expression of antioxidant superoxide reductase from Pyrococcus furiosus enhances stress tolerance in the cyanobacterium Synechococcus elongatus PCC7942. In Recombinant expression and characterization of industrial enzymes from thermophilic archaea (pp 98–166)

  • Kusakabe T, Tatsuke T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20:101–108

    Article  CAS  PubMed  Google Scholar 

  • Latifi A, Ruiz M, Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33(2):258–278

    Article  CAS  PubMed  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Sheng J, Curtiss R (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci U S A 108(17):6899–6904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Chen L, Wang J, Qiao J, Zhang W (2012) Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. Biotechnol Biofuels 5:68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VLM (2013) Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol 58(3):552–559

    Article  Google Scholar 

  • Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Mishra Y, Chaurasia N, Rai LC (2009) Heat pretreatment alleviates UV-B toxicity in the cyanobacterium Anabaena doliolum: a proteomic analysis of cross tolerance. Photochem Photobiol 85(3):824–833

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Tel-Or E (1991) Oxidative stress responses in the unicellular cyanobacterium Synechococcus PCC 7942. Free Radic Res Commun 13(October)(12–13 Pt):845–850

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, … Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309

  • Mudge SM (2005) Fatty alcohols—a review of their natural synthesis and environmental distribution. Soap Deterg Assoc 132:1–141

    Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta (BBA) - Bioenerg 1767(6):414–421

    Article  CAS  Google Scholar 

  • Nicolaou SA, Gaida SM, Papoutsakis ET (2010) A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 12(4):307–331

    Article  CAS  PubMed  Google Scholar 

  • Noweck K, Grafahrend W (2006) Fatty alcohols. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim

  • Nozzi NE, Oliver JWK, Atsumi S (2013) Cyanobacteria as a platform for biofuel production. Front Bioeng Biotechnol 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci U S A 110(4):1249–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2014) Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng 22:76–82

    Article  CAS  PubMed  Google Scholar 

  • Ong S-C, Kao C-Y, Chiu S-Y, Tsai M-T, Lin C-S (2010) Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresour Technol 101(8):2880–2883

    Article  CAS  PubMed  Google Scholar 

  • Pade N, Hagemann M (2014) Salt acclimation of cyanobacteria and their application in biotechnology. Life (Basel, Switzerland) 5(1):25–49

    Google Scholar 

  • Patel M, Neelis M, Gielen D, Olivier J, Simmons T, Theunis J, … Edenhofer O (2005) Carbon dioxide emissions from non-energy use of fossil fuels: summary of key issues and conclusions from the country analyses. Resour Conserv Recycl 45(3):195–209

  • Pattanaik B, Lindberg P (2015) Terpenoids and their biosynthesis in cyanobacteria. Life (Basel, Switzerland) 5(1):269–293

    Google Scholar 

  • Perelman A, Uzan A, Hacohen D, Schwarz R (2003) Oxidative stress in Synechococcus sp. strain PCC 7942: various mechanisms for H2O2 detoxification with different physiological roles. J Bacteriol 185(12):3654–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Rajaram H, Chaurasia AK, Apte SK (2014) Cyanobacterial heat-shock response: role and regulation of molecular chaperones. Microbiology 160(Pt.4):647–658

    Article  CAS  PubMed  Google Scholar 

  • Ramey CJ, Barón-Sola Á, Aucoin HR, Boyle NR (2015) Genome engineering in cyanobacteria: where we are and where we need to go. ACS Synth Biol 4(11):1186–1196

    Article  CAS  PubMed  Google Scholar 

  • Ruffing AM (2014) Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host. Front BioengBiotechnol 2:17

    Google Scholar 

  • Sarma MK, Kaushik S, Goswami P (2016) Cyanobacteria: a metabolic power house for harvesting solar energy to produce bio-electricity and biofuels. Biomass Bioenergy 90:187–201

    Article  CAS  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen CR, Liao JC, Shelton J, Lebedeva NV, Yarrow J, Min H, … Cho KM (2012) Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy Environ Sci 5(11):9574

  • Shi K, Gao Z, Shi T-Q, Song P, Ren L-J, Huang H, Ji X-J (2017) Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: the state of the art and future perspectives. Front Microbiol 8:793

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinetova MA, Los DA (2016) New insights in cyanobacterial cold stress responses: genes, sensors, and molecular triggers. Biochim Biophys Acta Gen Subj 1860(11):2391–2403

    Article  CAS  Google Scholar 

  • Singh SC, Sinha RP, Häder D-P (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Singh SP, Häder D-P, Sinha RP (2010) Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies. Ageing Res Rev 9(2):79–90

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Sharma NK, Prasad SB, Yadav SS, Narayan G, Rai AK (2013) The freshwater cyanobacterium Anabaena doliolum transformed with ApGSMT-DMT exhibited enhanced salt tolerance and protection to nitrogenase activity, but became halophilic. Microbiology 159(Pt.3):641–648

    Article  CAS  PubMed  Google Scholar 

  • Sinha RP, Klisch M, Gröniger A, Häder D-P (2001) Responses of aquatic algae and cyanobacteria to solar UV-B. Plant Ecol 154(1–2):221–236

    Google Scholar 

  • Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26(1):49–71

    Article  CAS  PubMed  Google Scholar 

  • Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106(6):1704–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su H-Y, Lee T-M, Huang Y-L, Chou S-H, Wang J-B, Lin L-F, Chow T-J (2011) Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability. Bot Stud 52(3):265–275

    CAS  Google Scholar 

  • Su H-Y, Chou H-H, Chow T-J, Lee T-M, Chang J-S, Huang W-L, Chen H-J (2017) Improvement of outdoor culture efficiency of cyanobacteria by over-expression of stress tolerance genes and its implication as bio-refinery feedstock. Bioresour Technol 244(Pt.2):1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Luo Q, Lu X (2016) Biosynthesis, biotechnological production, and applications of glucosylglycerols. Appl Microbiol Biotechnol 100(14):6131–6139

    Article  CAS  PubMed  Google Scholar 

  • Thomas DJ, Avenson TJ, Thomas JB, Herbert SK (1998) A cyanobacterium lacking iron superoxide dismutase is sensitized to oxidative stress induced with methyl viologen but is not sensitized to oxidative stress induced with norflurazon. Plant Physiol 116(4):1593–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas DJ, Thomas JB, Prier SD, Nasso NE, Herbert SK (1999) Iron superoxide dismutase protects against chilling damage in the cyanobacterium Synechococcus species PCC7942. Plant Physiol 120:275–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian X, Chen L, Wang J, Qiao J, Zhang W (2013) Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J Proteome 78:326–345

  • Ungerer J, Tao L, Davis M, Ghirardi M, Maness P-C, Yu J, Ogawa T (2012) Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy Environ Sci 5(10):8998

    Article  CAS  Google Scholar 

  • Wang B, Wang J, Zhang W, Meldrum DR (2012) Application of synthetic biology in cyanobacteria and algae. Front Microbiol 3:344

    PubMed  PubMed Central  Google Scholar 

  • Wen X, Gong H, Lu C (2005) Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem II but not to photosystem I in a cyanobacterium Spirulina platensis. Plant Physiol Biochem 43(4):389–395

    Article  CAS  PubMed  Google Scholar 

  • Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24(3):405–413

    Article  CAS  PubMed  Google Scholar 

  • Wilcox J (2014) Grand challenges in advanced fossil fuel technologies. Front Energy Res 2:47

    Article  Google Scholar 

  • Yao L, Qi F, Tan X, Lu X (2014) Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnol Biofuels 7:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshino T, Liang Y, Arai D, Maeda Y, Honda T, Muto M, … Tanaka T (2015) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the α-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99(3):1521–1529

  • Zeeshan M, Prasad SM (2009) Differential response of growth, photosynthesis, antioxidant enzymes and lipid peroxidation to UV-B radiation in three cyanobacteria. S Afr J Bot 75(3):466–474

    Article  CAS  Google Scholar 

  • Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Li Y (2010) Engineering cyanobacteria for fuels and chemicals production. Protein Cell 1(3):207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7(11709):1–9

    Google Scholar 

Download references

Funding

Support for some of the studies described in this review was provided by the National Science Foundation funded Emerging Frontiers in Research and Innovation grant no. 1332341.

Author information

Authors and Affiliations

Authors

Contributions

Both RLK and AMG conceived of and drafted the article.

Corresponding author

Correspondence to Amy M. Grunden.

Ethics declarations

Ethical approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

All authors have given consent for the submission and publication of this article.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitchener, R.L., Grunden, A.M. Methods for enhancing cyanobacterial stress tolerance to enable improved production of biofuels and industrially relevant chemicals. Appl Microbiol Biotechnol 102, 1617–1628 (2018). https://doi.org/10.1007/s00253-018-8755-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8755-5

Keywords

Navigation