Skip to main content
Log in

Nematicidal protease genes screened from a soil metagenomic library to control Radopholus similis mediated by Pseudomonas fluorescens pf36

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Controlling Radopholus similis, an important phytopathogenic nematode, is a challenge worldwide. Herein, we constructed a metagenomic fosmid library from the rhizosphere soil of banana plants, and six clones with protease activity were obtained by functionally screening the library. Furthermore, subclones were constructed using the six clones, and three protease genes with nematicidal activity were identified: pase1, pase4, and pase6. The pase4 gene was successfully cloned and expressed, demonstrating that the protease PASE4 could effectively degrade R. similis tissues and result in nematode death. Additionally, we isolated a predominant R. similis-associated bacterium, Pseudomonas fluorescens (pf36), from 10 R. similis populations with different hosts. The pase4 gene was successfully introduced into the pf36 strain by vector transformation and conjugative transposition, and two genetically modified strains were obtained: p4MCS-pf36 and p4Tn5-pf36. p4MCS-pf36 had significantly higher protease expression and nematicidal activity (p < 0.05) than p4Tn5-pf36 in a microtiter plate assay, whereas p4Tn5-pf36 was superior to p4MCS-pf36 in terms of genetic stability and controlling R. similis in growth pot tests. This study confirmed that R. similis is inhibited by the associated bacterium pf36-mediated expression of nematicidal proteases. Herein, a novel approach is provided for the study and development of efficient, environmentally friendly, and sustainable biocontrol techniques against phytonematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Åhman J, Johansson T, Olsson M, Punt PJ, van den Hondel CA, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415

    Article  PubMed  PubMed Central  Google Scholar 

  • Aravind R, Eapen SJ, Kumar A, Dinu A, Ramana KV (2010) Screening of endophytic bacteria and evaluation of selected isolates for suppression of burrowing nematode (Radopholus similis Thorne) using three varieties of black pepper (Piper nigrum L.) Crop Prot 29:318–324

    Article  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Balding C, Blaby I, Summers D (2006) A mutational analysis of the ColE1-encoded cell cycle regulator Rcd confirms its role in plasmid stability. Plasmid 56:68–73

    Article  CAS  PubMed  Google Scholar 

  • Baquiran JP, Thater B, Sedky S, Ley PD, Crowley D, Orwin PM (2013) Culture-independent investigation of the microbiome associated with the nematode Acrobeloides maximus. PLoS One 8:e67425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand H, Poly F, Van VT, Lombard N, Nalin R, Vogel TM, Simonet P (2005) High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. J Microbiol Meth 62:1–11

    Article  CAS  Google Scholar 

  • Chen LL, Liu LJ, Shi M, Song XY, Zheng CY, Chen XL, Zhang YZ (2009) Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiol Lett 299:135–142

    Article  CAS  PubMed  Google Scholar 

  • Diallo S, Crépin A, Barbey C, Orange N, Burini JF, Latour X (2011) Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiol Ecol 75:351–364

    Article  CAS  PubMed  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    Article  CAS  PubMed  Google Scholar 

  • Elsen A, Lens K, Nguyet DT, Broos S, Stoffelen R, De Waele D (2001) Aseptic culture systems of Radopholus similis for in vitro assays on Musa spp. and Arabidopsis thaliana. J Nematol 33:147–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elzer PH, Kovach ME, Phillips RW, Robertson GT, Peterson KM, RoopII RM (1995) In vivo and in vitro stability of the broad-host-range cloning vector pBBR1MCS in six Brucella speies. Plasmid 33:51–57

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Wnag J, Yu DQ, Bian F, Xie BB, Chen XL, Zhou BC, Lai LH, Wang ZX, Wu JW, Zhang YZ (2010) Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family. Proc Natl Acad Sci U S A 107:17569–17574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goff M, Nikodinovicrunic J, O’Connor KE (2009) Characterization of temperature-sensitive and lipopolysaccharide overproducing transposon mutants of Pseudomonas putida CA-3 affected in PHA accumulation. FEMS Microbiol Lett 292:297–305

    Article  CAS  PubMed  Google Scholar 

  • Griffitts JS, Whitacre JL, Stevens DE, Aroian RV (2001) Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293:860–864

    Article  CAS  PubMed  Google Scholar 

  • Huang XW, Tian BY, Niu QH, Yang JK, Zhang LM, Zhang KQ (2005) An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystal can serve as a pathogenic factor in infection of nematodes. Res Microbiol 156:719–727

    Article  CAS  PubMed  Google Scholar 

  • Jeger MJ, Waller JM, Johanson A, Gowen SR (1996) Monitoring in banana pest management. Crop Prot 15:391–397

    Article  Google Scholar 

  • Koffi MC, Vos C, Draye X, Declerck S (2013) Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions. Mycorrhiza 23:279–288

    Article  CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, RoopII RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang K, Xie H, Wang YT, Wang DW, Xu CL, Huang X, Wang DS (2015) A nematode calreticulin, Rs-CRT, is a key effector in reproduction and pathogenicity of Radopholus similis. PLoS One 10:e0129351

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu SC, Webster DA, Stark BC (1996) An improved method of transformation in Pseudomonas. Biotechnol Tech 10:683–686

    CAS  Google Scholar 

  • Luo XX, Chen L, Huang Q, Zheng JS, Zhou W, Peng DH, Ruan LF, Sun M (2013) Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. Appl Environ Microbiol 79:460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin DH, Barker KR, Sutton TB (2000) Efficacy of “ABG-9008” against burrowing nematode (Radopholus similis) on bananas. Nematropica 30:1–8

    Google Scholar 

  • Szabó M, Urbán P, Virányi F, Kredics L, Fekete C (2013) Comparative gene expression profiles of Trichoderma harzianum proteases during in vitro nematode egg-parasitism. Biol Control 67:337–343

    Article  Google Scholar 

  • Mendoza AR, Kiewnick S, Sikora RA (2008) In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci Techn 18:377–389

    Article  Google Scholar 

  • Neveu J, Regeard C, Dubow MS (2011) Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts. Appl Microbiol Biotechnol 91:635–644

    Article  CAS  PubMed  Google Scholar 

  • Niu QH, Huang XW, Tian BY, Yang JK, Liu J, Zhang L, Zhang KQ (2006) Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor. Appl Microbiol Biotechnol 69:722–730

    Article  CAS  Google Scholar 

  • Plowright R, Dusabe J, Coyne D, Speijer P (2013) Analysis of the pathogenic variability and genetic diversity of the plant-parasitic nematode Radopholus similis on bananas. Nematology 15:41–56

    Article  Google Scholar 

  • Reznikoff WS, Goryshin IY, Jendrisak JJ (2004) Tn5 as a molecular genetics tool: in vitro transposition and the coupling of in vitro technologies with in vivo transposition. Methods Mol Biol 260:83–96

    CAS  PubMed  Google Scholar 

  • Tian XL, Cheng XY, Mao ZC, Chen GH, Yang JR, Xie BY (2011) Composition of bacterial communities associated with a plant-parasitic nematode Bursaphelenchus mucronatus. Curr Microbiol 62:117–125

    Article  CAS  PubMed  Google Scholar 

  • Tsang MMC, Kara AH, Sipes BS (2004) Efficacy of hot water drenches of Anthurium andraeanum plants against the burrowing nematode Radopholus similis and plant thermotolerance. Ann Appl Biol 145:309–316

    Article  Google Scholar 

  • Vicente CS, Nascimento F, Espada M, Barbosa P, Mota M, Glick BR, Oliveira S (2012) Characterization of bacteria associated with pinewood nematode Bursaphelenchus xylophilus. PLoS One 7:e46661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Li Y, Xie H, Wu WJ, Xu CL (2016) Pin nematode slow decline of Anthurium andraeanum, a new disease caused by the pin nematode Paratylenchus shenzhenensis. Plant Dis 100:940–945

    Article  CAS  Google Scholar 

  • Wu JW, Chen XL (2011) Extracellular metalloproteases from bacteria. Appl Microbiol Biotechnol 92:253–262

    Article  CAS  PubMed  Google Scholar 

  • Yang JK, Liang LM, Zhang Y, Li J, Zhang L, Ye FP, Gan ZW, Zhang KQ (2007) Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes. Appl Microbiol Biotechnol 75:557–565

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Zhao J, Zeng RY (2011) Expression and characterization of a novel mesophilic protease from metagenomic library derived from Antarctic coastal sediment. Extremophiles 15:23–29

    Article  PubMed  Google Scholar 

  • Zheng F, Fu MY, Zhao ZX, Chen MC (2012) Community diversity of associated bacteria of Radopholus similis. Plant Dis Pest 3:33–37

    CAS  Google Scholar 

  • Zou CG, Tu HH, Liu XY, Tao N, Zhang KQ (2010) PacC in the nematophagous fungus Clonostachys rosea controls virulence to nematodes. Environ Microbiol 12:1868–1877

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Foundation of Natural Science of China (grant number 30671366 and 31071665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Wang, D., Xu, C. et al. Nematicidal protease genes screened from a soil metagenomic library to control Radopholus similis mediated by Pseudomonas fluorescens pf36. Appl Microbiol Biotechnol 102, 3301–3314 (2018). https://doi.org/10.1007/s00253-018-8869-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-8869-9

Keywords

Navigation