Skip to main content
Log in

Microbial community shifts in biogas reactors upon complete or partial ammonia inhibition

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Anaerobic digestion of nitrogen-rich substrate often causes process inhibition due to the susceptibility of the microbial community facing ammonia accumulation. However, the precise response of the microbial community has remained largely unknown. To explore the reasons, bacterial communities in ammonia-stressed reactors and control reactors were studied by amplicon pyrosequencing of 16S rRNA genes and the active methanogens were followed by terminal restriction fragment length polymorphism (T-RFLP) analyses of mcrA/mrtA gene transcripts. The results showed that the diversity of bacterial communities decreased in two parallel ammonia-inhibited reactors compared with two control reactors, but different levels of inhibitions coinciding with different community shifts were observed. In one reactor, the process was completely inhibited, which was preceded by a decreasing relative abundance of the phylum Firmicutes. Despite the same operating conditions, the process was stabilized in the parallel, partially inhibited reactor, in which the relative abundance of Firmicutes greatly increased. In particular, both ammonia-inhibited reactors lacked taxa assumed to be syntrophic bacteria (Thermoanaerobacteraceae, Syntrophomonadaceae, and Synergistaceae). Besides the predominance of the hydrogenotrophic methanogens Methanoculleus and Methanobacterium, activity of Methanosarcina and even of the strictly aceticlastic genus Methanosaeta were found to contribute at very high ammonia levels (> 9 g NH4-N L−1) in the stabilized reactor (partial inhibition). In contrast, the lack of aceticlastic activity in the parallel reactor might have led to acetate accumulation and thus process failure (complete inhibition). Collectively, ammonia was found to be a general inhibitor while accumulating acetate and thus acidification might be the key factor of complete process failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

We would like to thank Ute Lohse for technical assistance during pyrosequencing.

Funding

The work was supported by the National Natural Science Foundation of China (grant number 51708264) and Initiative and Networking Fund of the Helmholtz Association. Dr. Zuopeng Lv was supported by the China Scholarship Council (grant number 2011642040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuopeng Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 1113 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Leite, A.F., Harms, H. et al. Microbial community shifts in biogas reactors upon complete or partial ammonia inhibition. Appl Microbiol Biotechnol 103, 519–533 (2019). https://doi.org/10.1007/s00253-018-9444-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9444-0

Keywords

Navigation