Skip to main content
Log in

A procedure to identify natural arsenic sources, applied in an affected area in North Rhine-Westphalia, Germany

  • Original Article
  • Published:
Environmental Geology

Abstract

The aim of the study was to identify the geogenic source for elevated arsenic (As) concentrations recently discovered in soils of the Heubach plain, North Rhine-Westphalia, Germany. Therefore, a catalogue of conditions that an As source has to fulfil in order to be considered as geogenic was formulated, including the source’s linkage to the sink, its mineralogy, As total content, As mobilization potential, groundwater redox conditions and As output. Accordingly, mineralogical, geo- and hydrochemical investigations were carried out, including X-ray diffractometry, microscopy, ICP-OES and AAS analysis and a sequential extraction procedure. Paleo bog iron ores (PBIOs) of Tertiary age, occurring within unconsolidated sands (Haltern-layers, Santonian–Lower Campanian), and glauconitic marlstones (Dülmen-layers, Lower Campanian) were examined. Results indicate that output from the PBIOs is responsible for the elevated As levels. Accounting their diverse mineralogy, five types of PBIOs were defined. Type-dependent, they at least partly fulfil all of the formulated requirements. The relations and behaviour of As sources and sinks in space and time could be clarified for the area of interest. The approach presented in this paper may offer a tool for identifying natural As sources worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acharyya SK, Lahiri S, Raymahashay BC, Bhowmik A (2000) Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environ Geol 39:1127–1137

    Article  Google Scholar 

  • Aiuppa A, D’Alessandro W, Federico C, Palumbo B, Valenza M (2003) The aquatic geochemistry of arsenic in volcanic groundwaters from southern Italy. Appl Geochem 18:1283–1296

    Article  Google Scholar 

  • Armienta MA, Villaseñor G, Rodriguez R, Ongley LK, Mango H (2001) The role of arsenic-bearing rocks in groundwater pollution at Zimapán Valley, México. Environ Geol 40:571–581

    Article  Google Scholar 

  • Banwart S, Davies S, Stumm W (1989) The role of oxalate in accelerating the reductive dissolution of hematite (α-Fe2O3) by ascorbate. Colloid Surface 39:303–309

    Article  Google Scholar 

  • Braun FJ (1969) Bericht über die Vorkommen reiner Quarzsande (SiO2-Gehalt über 99%) im Gebiet von Haltern i. Westf. [Comment on the occurence of pure quartz sands (content of SiO2 above 99%) in the area of Haltern/Westphalia, Germany]. Geologisches Landesamt Nordrhein-Westfalen, Krefeld, Germany [in German]

  • Braun FJ, Thiermann A (1975) Erläuterungen zu Blatt C 4306 Recklinghausen—Geologische Karte von Nordrhein-Westfalen 1:100000 [Comments on the geological map C 4306 Recklinghausen—geological map of Northrhine-Westphalia 1:100000]. Geologisches Landesamt Nordrhein-Westfalen, Krefeld, Germany [in German]

  • Dahm-Arens H (1972) Entstehung der Eisenschwarten in den Kreidesanden Westfalens [Formation of iron crusts within Cretaceous sands in Westphalia, Germany]. Fortschr Geol Rheinland Westfalen 21:133–142 [in German]

    Google Scholar 

  • Driehaus W (2005) Adsorption von Arsen aus Trink- und Grundwasser: Bedeutung von Konkurrenzeffekten [Arsenic adsorption from drinking water and groundwater: the importance of ion competition]. Paper presented at the conference “Arsen 2005”, Leipzig, 19–20 April 2005 [in German]

  • García-Sanchez A, Moyano A, Mayorga P (2005) High arsenic contents in groundwater of central Spain. Environ Geol 47:847–854

    Article  Google Scholar 

  • Gautier J, Grosbois C, Courtin-Nomade A, Floćh JP, Martin F (2006) Transformation of natural As-associated ferrihydrite downstream of a remediated mining site. Eur J Mineral 18:187–195

    Article  Google Scholar 

  • Goldberg G, Lepper J, Röhling HG (1995) Geogene Arsengehalte in Gesteinen und Grundwässern des Buntsandsteins in Südniedersachsen [Geogenic arsenic contents in rocks and groundwater of the Buntsandstein formation in southern Lower Saxony, Germany]. Z Angew Geol 41:118–124 [in German]

    Google Scholar 

  • Gómez JJ, Lillo J, Sahún B (2006) Naturally occuring arsenic in groundwater and identification of the geochemical sources in the Duero Cenozoic Basin, Spain. Environ Geol 50:1151–1170

    Article  Google Scholar 

  • Grabert H (1998) Abriß der Geologie von Nordrhein-Westfalen [The Geology of the State of Northrhine-Westphalia, Germany]. Schweizerbart, Stuttgart [in German]

  • Han F, Banin A (1995) Selective sequential dissolution techniques for trace metals in arid-zone soils: the carbonate dissolution step. Commun Soil Sci Plant Anal 26:553–576

    Article  Google Scholar 

  • Heinrichs G, Udluft P (1996) Geogenes Arsen in Grundwässern Deutschlands unter Berücksichtigung der Aquifergeologie [Geogenic arsenic in German groundwater allowing for the aquifer’s geology]. Z Deut Geol Ges 147:519–530 [in German]

    Google Scholar 

  • Hilden HD (1975) Erläuterungen zu Blatt C 4306 Recklinghausen—Hydrogeologische Karte von Nordrhein-Westfalen 1:100000 [Comments on the hydrogeological map C 4306 Recklinghausen—hydrogeological map of Northrhine-Westphalia 1:100000]. Geologisches Landesamt Nordrhein-Westfalen, Krefeld, Germany [in German]

  • Hornburg V (1999) Arsen in der Geosphäre (Arsenic in the geosphere). In: Rosenberg F, Röhling HG (eds) Arsen in der Geosphäre, vol 6. Schriftenreihe der Deutschen Geologischen Gesellschaft, Heft, pp 73–80 [in German]

  • Hornburg V (2003) Vergleich von Methoden zur Bestimmung der Gesamtgehalte von Haupt- und Spurenelementen in Böden (Königswasser-Extrakt: Flusssäure-Aufschluss) [Comparison of total contents of principal elements and trace elements in soils (aqua regia vs. hydrofluoric acid)]. Mitt Dt Bodenkundl Ges 102:731–732 [in German]

    Google Scholar 

  • Krachler M, Emons H (2000) Extraction of antimony and arsenic from fresh and freeze-dried plant samples as determined by HG-AAS. Fresenius J Anal Chem 368:702–707

    Article  Google Scholar 

  • Matschullat J (1999) Arsen in der Geosphäre [Arsenic in the geosphere]. In: Rosenberg F, Röhling HG (eds) Arsen in der Geosphäre, vol 6. Schriftenreihe der Deutschen Geologischen Gesellschaft, Heft, pp 5–20 [in German]

  • McGeehan SL (1996) Arsenic sorption and redox reactions: relevance to transport and remediation. J Environ Sci Health 31:2319–2336

    Google Scholar 

  • Mertens J, Klinger C, Schreiber U, Wiegand J (2001) Geogene Arsen- und Schwermetallanreicherungen im Essener Grünsand des mittleren Ruhrgebietes [Geogenic enrichments of arsenic and heavy metals within the Essen greensand in the central Ruhr area, Germany]. Paper presented at the 153rd annual conference of the Deutsche Geologische Gesellschaft, Kiel, 2–6 October 2001 [in German]

  • Michel G (1995) Grundwasser—Dargebot, Nutzung und Gefährdung [Groundwater—resources, use and endangerment]. In: geological survey of North Rhine-Westphalia (Geologisches Landesamt Nordrhein-Westfalen) (ed) Geologie im Münsterland. Krefeld, pp 118–127 [in German]

  • Pedersen HD, Postma D, Jakobsen R (2006) Release of arsenic associated with the reduction and transformation of iron oxides. Geochim Cosmochim Acta 70:4116–4129

    Article  Google Scholar 

  • Peronne O (2003) Pedogene Arsenanreicherungen in grundwasserbeeinflussten Böden in der Heubachniederung, Kreis Recklinghausen [Pedogenic enrichments of arsenic in soils influenced by groundwater in the Heubach plain, Recklinghausen district, Germany]. Master thesis, University of Bochum, Germany [in German]

  • Pichler H, Schmitt-Riegraf C (1993) Gesteinsbildende Minerale im Dünnschliff [Rock-forming minerals in thin sections], 2nd edn. Enke, Stuttgart [in German]

  • Planer-Friedrich B (2004) Volatile arsenic in aquatic environments. Freiberger Forschungshefte C 503:1–172

    Google Scholar 

  • Postma D (1993) The reactivity of iron oxides in sediments: a kinetic approach. Geochim Cosmochim Acta 57:5027–5034

    Article  Google Scholar 

  • Ravenscroft P, Burgess WG, Ahmed K, Burren M, Perrin J (2005) Arsenic in groundwater of the Bengal Basin, Bangladesh: distribution, field relations, and hydrogeological setting. Hydrogeol J 13:727–751

    Article  Google Scholar 

  • Rochette EA, Li GC, Fendorf SE (1998) Stability of arsenate minerals in soils under biotically generated reducing conditions. Soil Sci Soc Am J 62:1530–1537

    Article  Google Scholar 

  • Rosenberg F, Mittelbach G, Kirnbauer T (1999) Geogene Arsengehalte im Bereich der Wiesbadener Thermalquellen [Geogenic arsenic concentrations in the area of the thermal springs in Wiesbaden, Germany]. In: Rosenberg F, Röhling HG (eds) Arsen in der Geosphäre, vol 6. Schriftenreihe der Deutschen Geologischen Gesellschaft, Heft pp 101–106 [in German]

  • Rott U, Meyer C (2000) Die unterirdische Trinkwasseraufbereitung—ein Verfahren zur rückstandsfreien Entfernung von Arsen [Subterranean treatment of drinking water—a procedure for the residue-free removal of arsenic). Wasser Abfall 10:36–43 [in German]

    Google Scholar 

  • Schreiber ME, Simo JA, Freiberg PG (2000) Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. Hydrogeol J 8:161–176

    Article  Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory—preparation and characterization, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  • Skupin K (1995) Tertiär [The tertiary]. In: geological survey of North Rhine-Westphalia (Geologisches Landesamt Nordrhein-Westfalen) (ed) Geologie im Münsterland. Krefeld, pp 66–70 [in German]

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Stollenwerk KG (2002) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water—geochemistry and occurrence. Springer, New York, pp 67–100

    Google Scholar 

  • Waychunas GA, Rea BA, Fuller CC, Davis JA (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta 57:2251–2269

    Article  Google Scholar 

  • Wendland A, Rank G, Barth A (1999) Verteilung des Arsens in den Rotliegendsedimenten Sachsens [Distribution of arsenic in sediments from the Rotliegend formation in Saxony, Germany]. In: Rosenberg F, Röhling HG (eds) Arsen in der Geosphäre, vol 6. Schriftenreihe der Deutschen Geologischen Gesellschaft, Heft, pp 93–100 [in German]

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323

    Article  Google Scholar 

  • Zeien H, Brümmer GW (1989) Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Böden [Chemical extractions for the determination of heavy metal bonding forms in soils]. Mitt Dt Bodenkundl Ges 59:505–510 [in German]

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Abteilung für Abfallwirtschaft und Umweltkoordination (Department of waste management and environmental coordination), Kreis Coesfeld for financial support, the contribution of spatial and most of the hydrochemical data and for general participation in this study. To the Department of Mineralogy (Klaus Mezger and his team) and the Laboratory for Environmental Analytics (Alexandra Reschka and her team), both Münster University, as well as to Andrea Müller, Stephan König and Ralf Orzol, we are thankful for advice and support during laboratory work. Our gratitude to David Barry (DLB Environmental, Surrey, UK) for critical editorial review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Banning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banning, A., Coldewey, W.G. & Göbel, P. A procedure to identify natural arsenic sources, applied in an affected area in North Rhine-Westphalia, Germany. Environ Geol 57, 775–787 (2009). https://doi.org/10.1007/s00254-008-1355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00254-008-1355-4

Keywords

Navigation