Skip to main content

Advertisement

Log in

Radiomics: a primer on high-throughput image phenotyping

  • Special Section: Quantitative Imaging
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Radiomics is a high-throughput approach to image phenotyping. It uses computer algorithms to extract and analyze a large number of quantitative features from radiological images. These radiomic features collectively describe unique patterns that can serve as digital fingerprints of disease. They may also capture imaging characteristics that are difficult or impossible to characterize by the human eye. The rapid development of this field is motivated by systems biology, facilitated by data analytics, and powered by artificial intelligence. Here, as part of Abdominal Radiology’s special issue on Quantitative Imaging, we provide an introduction to the field of radiomics. The technique is formally introduced as an advanced application of data analytics, with illustrating examples in abdominal radiology. Artificial intelligence is then presented as the main driving force of radiomics, and common techniques are defined and briefly compared. The complete step-by-step process of radiomic phenotyping is then broken down into five key phases. Potential pitfalls of each phase are highlighted, and recommendations are provided to reduce sources of variation, non-reproducibility, and error associated with radiomics.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tavassoly, I., J. Goldfarb, and R. Iyengar, Systems biology primer: the basic methods and approaches. Essays Biochem, 2018. 62(4): p. 487-500.

    Article  PubMed  Google Scholar 

  2. Mason, C.E., S.G. Porter, and T.M. Smith, Characterizing multi-omic data in systems biology. Adv Exp Med Biol, 2014. 799: p. 15-38.

    Article  CAS  PubMed  Google Scholar 

  3. Mato, J.M., M.L. Martínez-Chantar, and S.C. Lu, Systems biology for hepatologists. Hepatology, 2014. 60(2): p. 736-43.

    Article  CAS  PubMed  Google Scholar 

  4. Lambin, P., et al., Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012. 48(4): p. 441-6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kumar, V., et al., Radiomics: the process and the challenges. Magn Reson Imaging, 2012. 30(9): p. 1234-48.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gillies, R.J., P.E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016. 278(2): p. 563-77.

    Article  PubMed  Google Scholar 

  7. Yip, S.S. and H.J. Aerts, Applications and limitations of radiomics. Phys Med Biol, 2016. 61(13): p. R150-66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aerts, H.J., et al., Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 2014. 5: p. 4006.

    Article  CAS  PubMed  Google Scholar 

  9. Wu, G., et al., Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging, 2021.

  10. Parekh, V. and M.A. Jacobs, Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev, 2016. 1(2): p. 207-226.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mannil, M., et al., Texture Analysis and Machine Learning for Detecting Myocardial Infarction in Noncontrast Low-Dose Computed Tomography: Unveiling the Invisible. Invest Radiol, 2018. 53(6): p. 338-343.

    Article  PubMed  Google Scholar 

  12. Banerjee, S., et al., A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology, 2015. 62(3): p. 792-800.

    Article  PubMed  Google Scholar 

  13. Jeong, W.K., et al., Radiomics and radiogenomics of primary liver cancers. Clin Mol Hepatol, 2019. 25(1): p. 21-29.

    Article  PubMed  Google Scholar 

  14. Kodama, F., Learning Mode and Strategic Concept for the 4th Industrial Revolution. J. Open Innov. Technol. Mark. Complex., 2018. 4(32).

  15. Pessôa, M.B., JMJ, Research in Engineering Design, 2020. 31: p. 175–195.

  16. Currie, G., et al., Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J Med Imaging Radiat Sci, 2019. 50(4): p. 477-487.

    Article  PubMed  Google Scholar 

  17. Lambin, P., et al., Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017. 14(12): p. 749-762.

    Article  PubMed  Google Scholar 

  18. Mintz, Y. and R. Brodie, Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol, 2019. 28(2): p. 73-81.

    Article  PubMed  Google Scholar 

  19. Behjati, S. and P.S. Tarpey, What is next generation sequencing? Arch Dis Child Educ Pract Ed, 2013. 98(6): p. 236-8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Park, H.J., B. Park, and S.S. Lee, Radiomics and Deep Learning: Hepatic Applications. Korean J Radiol, 2020. 21(4): p. 387-401.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wei, J., et al., Radiomics in liver diseases: Current progress and future opportunities. Liver Int, 2020. 40(9): p. 2050-2063.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wakabayashi, T., et al., Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int, 2019. 13(5): p. 546-559.

    Article  PubMed  Google Scholar 

  23. Saini, A., et al., Radiogenomics and Radiomics in Liver Cancers. Diagnostics (Basel), 2018. 9(1).

  24. Fiz, F., et al., Radiomics of Liver Metastases: A Systematic Review. Cancers (Basel), 2020. 12(10).

  25. Dreher, C., et al., Radiomics for liver tumours. Strahlenther Onkol, 2020. 196(10): p. 888-899.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miranda Magalhaes Santos, J.M., et al., State-of-the-art in radiomics of hepatocellular carcinoma: a review of basic principles, applications, and limitations. Abdom Radiol (NY), 2020. 45(2): p. 342–353.

  27. Hu, W., et al., Radiomics based on artificial intelligence in liver diseases: where we are? Gastroenterol Rep (Oxf), 2020. 8(2): p. 90-97.

    Article  Google Scholar 

  28. Kocak, B., et al., Machine Learning in Radiomic Renal Mass Characterization: Fundamentals, Applications, Challenges, and Future Directions. AJR Am J Roentgenol, 2020. 215(4): p. 920-928.

    Article  PubMed  Google Scholar 

  29. Lubner, M.G., Radiomics and Artificial Intelligence for Renal Mass Characterization. Radiol Clin North Am, 2020. 58(5): p. 995-1008.

    Article  PubMed  Google Scholar 

  30. Kocak, B., et al., Radiomics of Renal Masses: Systematic Review of Reproducibility and Validation Strategies. AJR Am J Roentgenol, 2020. 214(1): p. 129-136.

    Article  PubMed  Google Scholar 

  31. Ursprung, S., et al., Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma-a systematic review and meta-analysis. Eur Radiol, 2020. 30(6): p. 3558-3566.

    Article  PubMed  PubMed Central  Google Scholar 

  32. de Leon, A.D., P. Kapur, and I. Pedrosa, Radiomics in Kidney Cancer: MR Imaging. Magn Reson Imaging Clin N Am, 2019. 27(1): p. 1-13.

    Article  PubMed  Google Scholar 

  33. Suarez-Ibarrola, R., et al., Radiomics Applications in Renal Tumor Assessment: A Comprehensive Review of the Literature. Cancers (Basel), 2020. 12(6).

  34. Abunahel, B.M., et al., Pancreas image mining: a systematic review of radiomics. Eur Radiol, 2021. 31(5): p. 3447-3467.

    Article  PubMed  Google Scholar 

  35. Dalal, V., et al., Radiomics in stratification of pancreatic cystic lesions: Machine learning in action. Cancer Lett, 2020. 469: p. 228-237.

    Article  CAS  PubMed  Google Scholar 

  36. Bartoli, M., et al., CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol, 2020. 38(12): p. 1111-1124.

    Article  PubMed  Google Scholar 

  37. Bezzi, C., et al., Radiomics in pancreatic neuroendocrine tumors: methodological issues and clinical significance. Eur J Nucl Med Mol Imaging, 2021.

  38. Codd, E.F., A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, 1970. 13(6): p. 377-387.

    Article  Google Scholar 

  39. Shropshire, E.L., et al., LI-RADS Treatment Response Algorithm: Performance and Diagnostic Accuracy. Radiology, 2019. 292(1): p. 226-234.

    Article  PubMed  Google Scholar 

  40. Lehman-Wilzig, S.N., Frankenstein unbound: Towards a legal definition of artificial intelligence. Futures, 1981. 13(6): p. 442-457.

    Article  Google Scholar 

  41. Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning. 2016: MIT Press.

  42. Kim, M., et al., Deep Learning in Medical Imaging. Neurospine, 2019. 16(4): p. 657-668.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Barisoni, L., et al., Digital pathology and computational image analysis in nephropathology. Nat Rev Nephrol, 2020. 16(11): p. 669-685.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gandomi, A. and M. Haider, Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 2015. 35(2): p. 137-144.

    Article  Google Scholar 

  45. Afshar, P., et al., From Handcrafted to Deep-Learning-Based Cancer Radiomics: Challenges and Opportunities. IEEE Signal Processing Magazine, 2019. 36(4): p. 132-160.

    Article  Google Scholar 

  46. Wang, X., et al., Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep, 2017. 7(1): p. 15415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wang, H., et al., Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures. Eur J Nucl Med Mol Imaging, 2021. 48(5): p. 1478-1486.

    Article  CAS  PubMed  Google Scholar 

  48. Zwanenburg, A., et al., The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020. 295(2): p. 328-338.

    Article  PubMed  Google Scholar 

  49. Lafata, K., et al., Spatial-temporal variability of radiomic features and its effect on the classification of lung cancer histology. Phys Med Biol, 2018. 63(22): p. 225003.

  50. Lu, L., et al., Reliability of Radiomic Features Across Multiple Abdominal CT Image Acquisition Settings: A Pilot Study Using ACR CT Phantom. Tomography, 2019. 5(1): p. 226-231.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Baeßler, B., K. Weiss, and D. Pinto Dos Santos, Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging: A Phantom Study. Invest Radiol, 2019. 54(4): p. 221–228.

  52. Yamashita, R., et al., Radiomic feature reproducibility in contrast-enhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation. Eur Radiol, 2020. 30(1): p. 195-205.

    Article  PubMed  Google Scholar 

  53. Gruzdev, I.S., et al., Reproducibility of CT texture features of pancreatic neuroendocrine neoplasms. Eur J Radiol, 2020. 133: p. 109371.

  54. Perrin, T., et al., Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdom Radiol (NY), 2018. 43(12): p. 3271-3278.

    Article  Google Scholar 

  55. van Timmeren, J.E., et al., Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging, 2020. 11(1): p. 91.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhao, B., et al., Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology, 2009. 252(1): p. 263-72.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schwier, M., et al., Repeatability of Multiparametric Prostate MRI Radiomics Features. Sci Rep, 2019. 9(1): p. 9441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fiset, S., et al., Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. Radiother Oncol, 2019. 135: p. 107-114.

    Article  PubMed  Google Scholar 

  59. Archive, T.C.I. RIDER Lung CT. Available from: https://wiki.cancerimagingarchive.net/display/Public/RIDER+Lung+CT.

  60. Mühlberg, A., et al., The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research. Sci Rep, 2020. 10(1): p. 1103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Scalco, E., et al., T2w-MRI signal normalization affects radiomics features reproducibility. Med Phys, 2020. 47(4): p. 1680-1691.

    Article  PubMed  Google Scholar 

  62. Kociołek, M., M. Strzelecki, and R. Obuchowicz, Does image normalization and intensity resolution impact texture classification? Comput Med Imaging Graph, 2020. 81: p. 101716.

  63. González, R.C. and R.E. Woods, Digital Image Processing. 2007: Prentice Hall.

  64. Budai, B.K., et al., Three-dimensional CT texture analysis of anatomic liver segments can differentiate between low-grade and high-grade fibrosis. BMC Med Imaging, 2020. 20(1): p. 108.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cui, E., et al., Predicting the stages of liver fibrosis with multiphase CT radiomics based on volumetric features. Abdom Radiol (NY), 2021.

  66. Park, H.J., et al., Radiomics Analysis of Gadoxetic Acid-enhanced MRI for Staging Liver Fibrosis. Radiology, 2019. 290(2): p. 380-387.

    Article  PubMed  Google Scholar 

  67. Wang, J.C., et al., A radiomics-based model on non-contrast CT for predicting cirrhosis: make the most of image data. Biomark Res, 2020. 8: p. 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Homayounieh, F., et al., Prediction of burden and management of renal calculi from whole kidney radiomics: a multicenter study. Abdom Radiol (NY), 2020: p. 1–10.

  69. Deng, Y., et al., DTI-based radiomics signature for the detection of early diabetic kidney damage. Abdom Radiol (NY), 2020. 45(8): p. 2526-2531.

    Article  Google Scholar 

  70. Mohammadinejad, P., et al., Automated radiomic analysis of CT images to predict likelihood of spontaneous passage of symptomatic renal stones. Emerg Radiol, 2021.

  71. De Perrot, T., et al., Differentiating kidney stones from phleboliths in unenhanced low-dose computed tomography using radiomics and machine learning. Eur Radiol, 2019. 29(9): p. 4776-4782.

    Article  PubMed  Google Scholar 

  72. Frøkjær, J.B., et al., Pancreatic magnetic resonance imaging texture analysis in chronic pancreatitis: a feasibility and validation study. Abdom Radiol (NY), 2020. 45(5): p. 1497-1506.

    Article  Google Scholar 

  73. Mashayekhi, R., et al., Radiomic features of the pancreas on CT imaging accurately differentiate functional abdominal pain, recurrent acute pancreatitis, and chronic pancreatitis. Eur J Radiol, 2020. 123: p. 108778.

  74. Ji, G.W., et al., Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study. EBioMedicine, 2019. 50: p. 156-165.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim, S., et al., Radiomics on Gadoxetic Acid-Enhanced Magnetic Resonance Imaging for Prediction of Postoperative Early and Late Recurrence of Single Hepatocellular Carcinoma. Clin Cancer Res, 2019. 25(13): p. 3847-3855.

    Article  CAS  PubMed  Google Scholar 

  76. Tan, S., et al., Adaptive region-growing with maximum curvature strategy for tumor segmentation in (18)F-FDG PET. Phys Med Biol, 2017. 62(13): p. 5383-5402.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rafiei, S., et al., Liver Segmentation in Abdominal CT Images Using Probabilistic Atlas and Adaptive 3D Region Growing. Annu Int Conf IEEE Eng Med Biol Soc, 2019. 2019: p. 6310-6313.

    PubMed  Google Scholar 

  78. Duan, H.H., et al., Segmentation of pulmonary vascular tree by incorporating vessel enhancement filter and variational region-growing. J Xray Sci Technol, 2019. 27(2): p. 343-360.

    PubMed  Google Scholar 

  79. Zeng, Y.Z., et al., Automatic liver vessel segmentation using 3D region growing and hybrid active contour model. Comput Biol Med, 2018. 97: p. 63-73.

    Article  PubMed  Google Scholar 

  80. Ren, H., et al., An unsupervised semi-automated pulmonary nodule segmentation method based on enhanced region growing. Quant Imaging Med Surg, 2020. 10(1): p. 233-242.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jiang, X., et al., Level Set Based Hippocampus Segmentation in MR Images with Improved Initialization Using Region Growing. Comput Math Methods Med, 2017. 2017: p. 5256346.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chung, M., et al., Accurate liver vessel segmentation via active contour model with dense vessel candidates. Comput Methods Programs Biomed, 2018. 166: p. 61-75.

    Article  PubMed  Google Scholar 

  83. Guo, X., L.H. Schwartz, and B. Zhao, Automatic liver segmentation by integrating fully convolutional networks into active contour models. Med Phys, 2019. 46(10): p. 4455-4469.

    Article  PubMed  Google Scholar 

  84. Zareei, A. and A. Karimi, Liver segmentation with new supervised method to create initial curve for active contour. Comput Biol Med, 2016. 75: p. 139-50.

    Article  PubMed  Google Scholar 

  85. Middleton, I. and R.I. Damper, Segmentation of magnetic resonance images using a combination of neural networks and active contour models. Med Eng Phys, 2004. 26(1): p. 71-86.

    Article  PubMed  Google Scholar 

  86. Yuan, Y., et al., Hybrid method combining superpixel, random walk and active contour model for fast and accurate liver segmentation. Comput Med Imaging Graph, 2018. 70: p. 119-134.

    Article  PubMed  Google Scholar 

  87. da Silva, G.L.F., et al., Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans. Med Biol Eng Comput, 2020. 58(9): p. 1947-1964.

    Article  PubMed  Google Scholar 

  88. Datta, E., et al., Gray matter segmentation of the spinal cord with active contours in MR images. Neuroimage, 2017. 147: p. 788-799.

    Article  PubMed  Google Scholar 

  89. Foruzan, A.H., et al., Liver segmentation by intensity analysis and anatomical information in multi-slice CT images. Int J Comput Assist Radiol Surg, 2009. 4(3): p. 287-97.

    Article  PubMed  Google Scholar 

  90. Sandmair, M., et al., Semiautomatic segmentation of the kidney in magnetic resonance images using unimodal thresholding. BMC Res Notes, 2016. 9(1): p. 489.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fedorov, A., et al., 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging, 2012. 30(9): p. 1323-41.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yushkevich, P.A., G. Yang, and G. Gerig, ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. Annu Int Conf IEEE Eng Med Biol Soc, 2016. 2016: p. 3342-3345.

    PubMed  Google Scholar 

  93. Qiu, Q., et al., Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability. Quant Imaging Med Surg, 2019. 9(3): p. 453-464.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Belli, M.L., et al., Quantifying the robustness of [(18)F]FDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients. Phys Med, 2018. 49: p. 105-111.

    Article  PubMed  Google Scholar 

  95. Kocak, B., et al., Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Eur Radiol, 2019. 29(9): p. 4765-4775.

    Article  PubMed  Google Scholar 

  96. Kocak, B., et al., Reliability of Single-Slice-Based 2D CT Texture Analysis of Renal Masses: Influence of Intra- and Interobserver Manual Segmentation Variability on Radiomic Feature Reproducibility. AJR Am J Roentgenol, 2019. 213(2): p. 377-383.

    Article  PubMed  Google Scholar 

  97. Simpson, G., et al., Impact of quantization algorithm and number of gray level intensities on variability and repeatability of low field strength magnetic resonance image-based radiomics texture features. Phys Med, 2020. 80: p. 209-220.

    Article  PubMed  Google Scholar 

  98. Bousabarah, K., et al., Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning. Abdom Radiol (NY), 2021. 46(1): p. 216-225.

    Article  Google Scholar 

  99. Haarburger, C., et al., Radiomics feature reproducibility under inter-rater variability in segmentations of CT images. Sci Rep, 2020. 10(1): p. 12688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Panda, A., et al., Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Med Phys, 2021.

  101. Zheng, R., et al., Feasibility of automatic detection of small hepatocellular carcinoma (≤2 cm) in cirrhotic liver based on pattern matching and deep learning. Phys Med Biol, 2021. 66(8).

  102. Zwanenburg A, L.S., Vallieres M, Lock S., Image biomarker standardisation initiative reference manual. arXiv preprint arXiv:1612.07003.

  103. van Griethuysen, J.J.M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillon-Robin, J. C., Pieper, S., Aerts, H. J. W. L., Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 2017. 77(12): p. e104–e107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Apte, A.P., et al., Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Med Phys, 2018.

  105. Zhang, L., et al., IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys, 2015. 42(3): p. 1341-53.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Szczypiński, P.M., et al., MaZda--a software package for image texture analysis. Comput Methods Programs Biomed, 2009. 94(1): p. 66-76.

    Article  PubMed  Google Scholar 

  107. Nioche, C., et al., LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res, 2018. 78(16): p. 4786-4789.

    Article  CAS  PubMed  Google Scholar 

  108. Collewet, G., M. Strzelecki, and F. Mariette, Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging, 2004. 22(1): p. 81-91.

    Article  CAS  PubMed  Google Scholar 

  109. Vallières, M., et al., A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol, 2015. 60(14): p. 5471-96.

    Article  PubMed  Google Scholar 

  110. Duron, L., et al., Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS One, 2019. 14(3): p. e0213459.

  111. Leijenaar, R.T., et al., The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep, 2015. 5: p. 11075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Loi, S., et al., Robustness of CT radiomic features against image discretization and interpolation in characterizing pancreatic neuroendocrine neoplasms. Phys Med, 2020. 76: p. 125-133.

    Article  PubMed  Google Scholar 

  113. Davnall, F., et al., Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging, 2012. 3(6): p. 573-89.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hausdorff, F.M. 2nd ed. 1927, Berlin and Leipzig: Walter de Gruyter.

  115. Voronoi, G., Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. Journal für die reine und angewandte Mathematik (Crelles Journal), 1908. 133: p. 97–102.

  116. Wiener, H., Structural determination of paraffin boiling points. Journal of the American Chemical Society, 1947. 1(69): p. 17-20.

    Article  Google Scholar 

  117. Haralick, R.M., Statistical and structural approaches to texture. Proceedings of the IEEE, 1979. 67(5): p. 786-804.

    Article  Google Scholar 

  118. Tang, X., Texture information in run-length matrices. IEEE Trans Image Process, 1998. 7(11): p. 1602-9.

    Article  CAS  PubMed  Google Scholar 

  119. Thibault, G., et al., Texture Indexes and Gray Level Size Zone Matrix. Application to Cell Nuclei Classification. Pattern Recognition and Information Processing (PRIP), 2009: p. 140–145.

  120. Haar, A., Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, 1909. 69(3): p. 331-371.

    Article  Google Scholar 

  121. Gabor, D., Theory of Communication, Part 1: The analysis of information. Radio and Communication, 1946. 93: p. 429.

    Google Scholar 

  122. Mandelbrot, B., How long is the coast of britain? Statistical self-similarity and fractional dimension. Science, 1967. 156(3775): p. 636-8.

    Article  CAS  PubMed  Google Scholar 

  123. Kramer, M.A., Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 1991. 37(2): p. 233–243.

    Article  CAS  Google Scholar 

  124. He, K., et al., Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: p. 770–778.

  125. Chang, Y., et al., Digital phantoms for characterizing inconsistencies among radiomics extraction toolboxes. Biomed Phys Eng Express, 2020. 6(2): p. 025016.

  126. Chang, Y., et al., Development of realistic multi-contrast textured XCAT (MT-XCAT) phantoms using a dual-discriminator conditional-generative adversarial network (D-CGAN). Phys Med Biol, 2020. 65(6): p. 065009.

  127. Jaggi, A., et al., Stanford DRO Toolkit: Digital Reference Objects for Standardization of Radiomic Features. Tomography, 2020. 6(2): p. 111-117.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yang, F., et al., Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: A simulation study utilizing ground truth. Phys Med, 2018. 50: p. 26-36.

    Article  PubMed  Google Scholar 

  129. Fave, X., et al., Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep, 2017. 7(1): p. 588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Chang, Y., et al., An investigation of machine learning methods in delta-radiomics feature analysis. PLoS One, 2019. 14(12): p. e0226348.

  131. Lafata, K.J., et al., Intrinsic radiomic expression patterns after 20 Gy demonstrate early metabolic response of oropharyngeal cancers. Med Phys, 2021. 48(7): p. 3767–3777. https://doi.org/10.1002/mp.14926.

    Article  PubMed  Google Scholar 

  132. Jeon, S.H., et al., Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer. Radiat Oncol, 2019. 14(1): p. 43.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Mazzei, M.A., et al., The role of delta radiomics in gastric cancer. Quant Imaging Med Surg, 2018. 8(7): p. 719-721.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Deo, R.C., Machine Learning in Medicine. Circulation, 2015. 132(20): p. 1920-30.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Triantafyllidis, A.K. and A. Tsanas, Applications of Machine Learning in Real-Life Digital Health Interventions: Review of the Literature. J Med Internet Res, 2019. 21(4): p. e12286.

  136. Erickson, B.J., et al., Machine Learning for Medical Imaging. Radiographics, 2017. 37(2): p. 505-515.

    Article  PubMed  Google Scholar 

  137. Baştanlar, Y. and M. Ozuysal, Introduction to machine learning. Methods Mol Biol, 2014. 1107: p. 105-28.

    Article  PubMed  Google Scholar 

  138. Goecks, J., et al., How Machine Learning Will Transform Biomedicine. Cell, 2020. 181(1): p. 92-101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Singh A, T.N., and Sharma A, A review of supervised machine learning algorithms. 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2016: p. 1310–1315.

  140. Kotsiantis SB, Z.I., Pintelas P, Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, 2007. 160(1): p. 3–24.

  141. Usama M, Q.J., Raza A, et al., Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEE Access, 2019. 7: p. 65579–65615.

  142. Lafata, K., Zhou, Z., Liu, J.G., Yin, F.F., Data clustering based on Langevin annealing with a self-consistent potential. Quarterly of Applied Mathematics, 2019. 77(3): p. 591–613.

  143. Lu, H., et al., A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat Commun, 2019. 10(1): p. 764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lafata, K.J., et al., An Exploratory Radiomics Approach to Quantifying Pulmonary Function in CT Images. Sci Rep, 2019. 9(1): p. 11509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Lafata, K.J., et al., Radiogenomic analysis of locally advanced lung cancer based on CT imaging and intra-treatment changes in cell free DNA. Radiol Imaging Cancer, 2021. https://doi.org/10.1148/rycan.2021200157.

  146. Krishan, A. and D. Mittal, Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering. Biomed Tech (Berl), 2020. 65(3): p. 301-313.

    Article  CAS  Google Scholar 

  147. Xu, M., et al., Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Biomed Eng Online, 2019. 18(1): p. 2.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Zheng, X., et al., PWLS-ULTRA: An Efficient Clustering and Learning-Based Approach for Low-Dose 3D CT Image Reconstruction. IEEE Trans Med Imaging, 2018. 37(6): p. 1498-1510.

    Article  PubMed  PubMed Central  Google Scholar 

  149. The Cancer Imaging Archive. Available from: https://www.cancerimagingarchive.net/collections/.

  150. Kalendralis, P., et al., FAIR-compliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and head-Neck1 TCIA collections. Med Phys, 2020. 47(11): p. 5931-5940.

    Article  PubMed  Google Scholar 

  151. Lafata, K.J., et al., Association of pre-treatment radiomic features with lung cancer recurrence following stereotactic body radiation therapy. Phys Med Biol, 2019. 64(2): p. 025007.

  152. Welch, M.L., et al., Vulnerabilities of radiomic signature development: The need for safeguards. Radiother Oncol, 2019. 130: p. 2–9.

    Article  PubMed  Google Scholar 

  153. Jiang, H., et al., Week 4 liver fat reduction on MRI as an early predictor of treatment response in participants with nonalcoholic steatohepatitis. Radiology, 2021. 300(2): p. 361–368. https://doi.org/10.1148/radiol.2021204325.

    Article  PubMed  Google Scholar 

  154. Fournier, L., et al., Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur Radiol, 2021. 31(8): p. 6001-6012.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Abadi, E., et al., Virtual clinical trials in medical imaging: a review. J Med Imaging (Bellingham), 2020. 7(4): p. 042805.

  156. Madabhushi, A. and C.C. Reyes-Aldasoro, Special issue on computational pathology: An overview. Med Image Anal, 2021. 73: p. 102151.

  157. Tian, J., et al., ASO Author Reflections: Radiopathomics Strategy of Combing Multi-scale Tumor Information on Pretreatment to Predict the Pathologic Response to Neoadjuvant Therapy. Ann Surg Oncol, 2020. 27(11): p. 4307-4308.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Shao, L., et al., Multiparametric MRI and Whole Slide Image-Based Pretreatment Prediction of Pathological Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer: A Multicenter Radiopathomic Study. Ann Surg Oncol, 2020. 27(11): p. 4296-4306.

    Article  PubMed  PubMed Central  Google Scholar 

  159. McGarry, S.D., et al., Radio-pathomic mapping model generated using annotations from five pathologists reliably distinguishes high-grade prostate cancer. J Med Imaging (Bellingham), 2020. 7(5): p. 054501.

  160. Alvarez-Jimenez, C., et al., Identifying Cross-Scale Associations between Radiomic and Pathomic Signatures of Non-Small Cell Lung Cancer Subtypes: Preliminary Results. Cancers (Basel), 2020. 12(12).

  161. Sun, R., et al., [Artificial intelligence, radiomics and pathomics to predict response and survival of patients treated with radiations]. Cancer Radiother, 2021.

  162. Bera, K., et al., Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol, 2019. 16(11): p. 703-715.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Melo, R.C.N., et al., Whole Slide Imaging and Its Applications to Histopathological Studies of Liver Disorders. Front Med (Lausanne), 2019. 6: p. 310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle J. Lafata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafata, K.J., Wang, Y., Konkel, B. et al. Radiomics: a primer on high-throughput image phenotyping. Abdom Radiol 47, 2986–3002 (2022). https://doi.org/10.1007/s00261-021-03254-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03254-x

Keywords

Navigation