Skip to main content
Log in

Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that are increased in the peripheral blood of cancer patients and limit productive immune responses against tumors. Immunosuppressive MDSCs are well characterized in murine splenic tissue and are found at higher frequencies in spleens of tumor-bearing mice. However, no studies have yet analyzed these cells in parallel human spleens. We hypothesized that MDSCs would be increased in the spleens of human cancer patients, similar to tumor-bearing mice. We compared the frequency and function of MDSC subsets in dissociated human spleen from 16 patients with benign pancreatic cysts and 26 patients with a variety of cancers. We found that total MDSCs (Linneg CD11bpos CD33pos HLA-DRneg), granulocytic MDSCs (additional markers CD14neg CD15pos), and monocytic MDSCs (CD14pos CD15neg) were identified in human spleen. The monocytic subset was the most prominent in both spleen and peripheral blood and the granulocytic subset was expanded in the spleen relative to matched peripheral blood samples. Importantly, the frequency of CD15pos MDSCs in the spleen was increased in patients with cancer compared to patients with benign pancreatic cysts and was associated with a significantly increased risk of death and decreased overall survival. Finally, MDSCs isolated from the spleen suppressed T cell responses, demonstrating for the first time the functional capacity of human splenic MDSCs. These data suggest that the human spleen is a potential source of large quantities of cells with immunosuppressive function for future characterization and in-depth studies of human MDSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CFSE:

Carboxyfluorescein succinimidyl ester

DMSO:

Dimethyl sulfoxide

H&E:

Hematoxylin and Eosin

MDSC:

Myeloid-derived suppressor cell

MLR:

Mixed-lymphocyte reaction

PBMC:

Peripheral blood mononuclear cells

PBS:

Phosphate-buffered saline

References

  1. Talmadge JE (2007) Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res 13(18 Pt 1):5243–5248

    Article  CAS  PubMed  Google Scholar 

  2. Mandruzzato S, Brandau S, Britten CM, Bronte V, Damuzzo V, Gouttefangeas C, Maurer D, Ottensmeier C, van der Burg SH, Welters MJ, Walter S (2016) Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: results from an interim study. Cancer Immunol Immunother 65(2):161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Mier J, Ochoa AC (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65(8):3044–3048

    CAS  PubMed  Google Scholar 

  4. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Kruger C, Manns MP, Greten TF, Korangy F (2008) A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 135(1):234–243

    Article  CAS  PubMed  Google Scholar 

  5. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Serafini P (2013) Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunol Res 57(1–3):172–184

    Article  PubMed  Google Scholar 

  7. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Talmadge JE, Gabrilovich DI (2013) History of myeloid-derived suppressor cells. Nat Rev Cancer 13(10):739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Solito S, Marigo I, Pinton L, Damuzzo V, Mandruzzato S, Bronte V (2014) Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci 1319:47–65

    Article  CAS  PubMed  Google Scholar 

  10. Jordan KR, Amaria RN, Ramirez O, Callihan EB, Gao D, Borakove M, Manthey E, Borges VF, McCarter MD (2013) Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunol Immunother 62(11):1711–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60(10):1419–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steiniger BS (2015) Human spleen microanatomy: why mice do not suffice. Immunology 145(3):334–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao F, Obermann S, von Wasielewski R, Haile L, Manns MP, Korangy F, Greten TF (2009) Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology 128(1):141–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 67(19):9518–9527

    Article  CAS  PubMed  Google Scholar 

  15. Goedegebuure P, Mitchem JB, Porembka MR, Tan MC, Belt BA, Wang-Gillam A, Gillanders WE, Hawkins WG, Linehan DC (2011) Myeloid-derived suppressor cells: general characteristics and relevance to clinical management of pancreatic cancer. Curr Cancer Drug Targets 11(6):734–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghansah T, Vohra N, Kinney K, Weber A, Kodumudi K, Springett G, Sarnaik AA, Pilon-Thomas S (2013) Dendritic cell immunotherapy combined with gemcitabine chemotherapy enhances survival in a murine model of pancreatic carcinoma. Cancer Immunol Immunother 62(6):1083–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61(12):4756–4760

    CAS  PubMed  Google Scholar 

  18. Cress RD, Yin D, Clarke L, Bold R, Holly EA (2006) Survival among patients with adenocarcinoma of the pancreas: a population-based study (United States). Cancer Causes Control 17(4):403–409

    Article  PubMed  Google Scholar 

  19. Porembka MR, Mitchem JB, Belt BA, Hsieh CS, Lee HM, Herndon J, Gillanders WE, Linehan DC, Goedegebuure P (2012) Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother 61(9):1373–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b + myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11(18):6713–6721

    Article  CAS  PubMed  Google Scholar 

  21. Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD (2009) Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 9(7–8):900–909

    Article  CAS  PubMed  Google Scholar 

  22. Bunt SK, Mohr AM, Bailey JM, Grandgenett PM, Hollingsworth MA (2013) Rosiglitazone and Gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer. Cancer Immunol Immunother 62(2):225–236

    Article  CAS  PubMed  Google Scholar 

  23. Kotsakis A, Harasymczuk M, Schilling B, Georgoulias V, Argiris A, Whiteside TL (2012) Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. J Immunol Methods 381(1–2):14–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R, Ochoa AC (2009) Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 69(4):1553–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gros A, Turcotte S, Wunderlich JR, Ahmadzadeh M, Dudley ME, Rosenberg SA (2012) Myeloid cells obtained from the blood but not from the tumor can suppress T-cell proliferation in patients with melanoma. Clin Cancer Res 18(19):5212–5223

    Article  CAS  PubMed  Google Scholar 

  26. Younos I, Donkor M, Hoke T, Dafferner A, Samson H, Westphal S, Talmadge J (2011) Tumor- and organ-dependent infiltration by myeloid-derived suppressor cells. Int Immunopharmacol 11(7):816–826

    Article  CAS  PubMed  Google Scholar 

  27. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Freedman MH, Saunders EF (1981) Hematopoiesis in the human spleen. Am J Hematol 11(3):271–275

    Article  CAS  PubMed  Google Scholar 

  29. Grizzle WE, Xu X, Zhang S, Stockard CR, Liu C, Yu S, Wang J, Mountz JD, Zhang HG (2007) Age-related increase of tumor susceptibility is associated with myeloid-derived suppressor cell mediated suppression of T cell cytotoxicity in recombinant inbred BXD12 mice. Mech Ageing Dev 128(11–12):672–680

    Article  CAS  PubMed  Google Scholar 

  30. Bao Y, Mo J, Ruan L, Li G (2015) Increased monocytic CD14(+)HLADRlow/- myeloid-derived suppressor cells in obesity. Mol Med Rep 11(3):2322–8

    CAS  PubMed  Google Scholar 

  31. Xia S, Sha H, Yang L, Ji Y, Ostrand-Rosenberg S, Qi L (2011) Gr-1 + CD11b + myeloid-derived suppressor cells suppress inflammation and promote insulin sensitivity in obesity. J Biol Chem 286(26):23591–23599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kasenda B, Bass A, Koeberle D, Pestalozzi B, Borner M, Herrmann R, Jost L, Lohri A, Hess V (2014) Survival in overweight patients with advanced pancreatic carcinoma: a multicentre cohort study. BMC Cancer 14:728

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kusmartsev S, Gabrilovich DI (2003) Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74(2):186–196

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe S, Deguchi K, Zheng R, Tamai H, Wang LX, Cohen PA, Shu S (2008) Tumor-induced CD11b + Gr-1 + myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. J Immunol 181(5):3291–3300

    Article  CAS  PubMed  Google Scholar 

  35. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, Yancey D, Dahm P, Vieweg J (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14(24):8270–8278

    Article  CAS  PubMed  Google Scholar 

  36. Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bronte V, Zanovello P (2009) IL4Ralpha + myeloid-derived suppressor cell expansion in cancer patients. J Immunol 182(10):6562–6568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding provided by the University of Colorado Cancer Center Support Grant (P30CA046934), American Cancer Society 2012 Roaring Fork Valley Postdoctoral Research Award, and the Conner Family Foundation Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. McCarter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 571 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jordan, K.R., Kapoor, P., Spongberg, E. et al. Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients. Cancer Immunol Immunother 66, 503–513 (2017). https://doi.org/10.1007/s00262-016-1953-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1953-z

Keywords

Navigation