Skip to main content
Log in

Inflammasome activation, NLRP3 engagement and macrophage recruitment to tumor microenvironment are all required for Salmonella antitumor effect

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Salmonella-based cancer therapies show great potential in preclinical models, but for most cases the observed antitumor effect is transient. Understanding the basis of the antitumor efficacy might guide the design of improved strains that elicit long-lasting effects, paving the wave for clinical use.  Here, we deepened into the role of macrophages and inflammasome activation in the context of Salmonella anti-melanoma effect. We showed inflammasome activation in melanoma cells upon infection, which correlated with cell surface exposure of gasdermin-D (GSDM-D) and calreticulin (CRT) and High mobility group box 1 protein (HMGB-1) release, suggesting immunogenic cell death, particularly pyroptosis. Salmonella infection upregulated levels of Caspase-11 (Casp11) mRNA, but not Nlrp3 or Nlrc4 mRNA, the only described inflammasome receptors engaged by Salmonella, suggesting that non-canonical inflammasome activation could be occurring in melanoma cells. Intratumoral administration of Salmonella to melanoma-bearing mice elicited local inflammasome activation and interleukin-1β (IL-1β) production together with tumor growth retardation and extended survival in wild type but not Caspase-1/11 (Casp1/11) knockout mice despite similar levels of intratumoral IL-1β in the later. Salmonella antitumor activity was also suppressed in melanoma bearing Nlrp3 knockout mice. Salmonella induced macrophage recruitment to the tumor site and infiltrating cells exhibited inflammasome activation. Depletion experiments confirmed that macrophages are also essential for Salmonella anti-melanoma effect. Intratumoral macrophages showed a marked M2/M1 shift soon after treatment but this inflammatory profile is then lost, which could explain the transient effect of therapy.  All in all, our results highlight CASP-1/11 axis and macrophages as essential players in Salmonella-based cancer immunotherapy and suggest a possible target for future interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sznol M et al (2000) Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest 105(8):1027–1030

    Article  CAS  Google Scholar 

  2. Luo X et al (2001) Antitumor effect of VNP20009, an attenuated Salmonella, in murine tumor models. Oncol Res 12(11–12):501–508

    Article  CAS  Google Scholar 

  3. Avogadri F et al (2005) Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res 65(9):3920–3927

    Article  CAS  Google Scholar 

  4. Pawelek JM, Low KB, Bermudes D (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 57(20):4537–4544

    CAS  PubMed  Google Scholar 

  5. Leschner S et al (2009) Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-alpha. PLoS One 4(8):e6692

    Article  Google Scholar 

  6. Moreno M et al (2010) Salmonella as live trojan horse for vaccine development and cancer gene therapy. Curr Gene Ther 10(1):56–76

    Article  CAS  Google Scholar 

  7. Grille S et al (2014) Salmonella Enterica serovar Typhimurium immunotherapy for B-Cell Lymphoma induces broad antitumor immunity with therapeutic effect. Immunology 143(3):428–437

    Article  CAS  Google Scholar 

  8. Vola M et al (2018) TLR7 agonist in combination with Salmonella as an effective antimelanoma immunotherapy. Immunotherapy 10(8):665–679

    Article  CAS  Google Scholar 

  9. Broz P et al (2010) Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med 207(8):1745–1755

    Article  CAS  Google Scholar 

  10. Gong T et al (2018) Orchestration of NLRP3 Inflammasome Activation by Ion Fluxes. Trends Immunol 39(5):393–406

    Article  CAS  Google Scholar 

  11. Shi J et al (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514(7521):187–192

    Article  CAS  Google Scholar 

  12. Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9(3):113–114

    Article  CAS  Google Scholar 

  13. Lamkanfi M et al (2010) Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol 185(7):4385–4392

    Article  CAS  Google Scholar 

  14. Evavold CL et al (2018) The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48(1):35-44.e6

    Article  CAS  Google Scholar 

  15. Xia X et al (2019) The role of pyroptosis in cancer: pro-cancer or pro-"host"? Cell Death Dis 10(9):650

    Article  Google Scholar 

  16. Phan TX et al (2015) Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiol Immunol 59(11):664–675

    Article  CAS  Google Scholar 

  17. Kim JE et al (2015) Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1beta. Theranostics 5(12):1328–1342

    Article  CAS  Google Scholar 

  18. Chabalgoity JA et al (2000) Salmonella typhimurium as a basis for a live oral Echinococcus granulosus vaccine. Vaccine 19(4–5):460–469

    Article  CAS  Google Scholar 

  19. Van Asten FJ et al (2000) Inactivation of the flagellin gene of Salmonella enterica serotype enteritidis strongly reduces invasion into differentiated Caco-2 cells. FEMS Microbiol Lett 185(2):175–179

    Article  Google Scholar 

  20. Didierlaurent A et al (2004) Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response. J Immunol 172(11):6922–6930

    Article  CAS  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  22. Miller MA et al (2015) Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun 6:8692

    Article  CAS  Google Scholar 

  23. Franchi L (2011) Role of inflammasomes in salmonella infection. Front Microbiol 2:8

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kepp O et al (2015) Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3(9):e955691

    Article  Google Scholar 

  25. Sborgi L et al (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35(16):1766–1778

    Article  CAS  Google Scholar 

  26. Galluzzi L et al (2020) Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. https://doi.org/10.1136/jitc-2019-000337corr1

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ahmed A, Tait SWG (2020) Targeting immunogenic cell death in cancer. Mol Oncol 14(12):2994–3006

    Article  CAS  Google Scholar 

  28. Brough D, Rothwell NJ (2007) Caspase-1-dependent processing of pro-interleukin-1beta is cytosolic and precedes cell death. J Cell Sci 120(Pt 5):772–781

    Article  CAS  Google Scholar 

  29. Emran AA et al (2020) Do innate killing mechanisms activated by inflammasomes have a role in treating melanoma? Pigment Cell Melanoma Res 33(5):660–670

    Article  Google Scholar 

  30. Karan D (2018) Inflammasomes: emerging central players in cancer immunology and immunotherapy. Front Immunol 9:3028

    Article  CAS  Google Scholar 

  31. Kantono M, Guo B (2017) Inflammasomes and cancer: the dynamic role of the inflammasome in tumor development. Front Immunol 8:1132

    Article  Google Scholar 

  32. Okamoto M et al (2010) Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1beta. J Biol Chem 285(9):6477–6488

    Article  CAS  Google Scholar 

  33. Zaki MH et al (2010) IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol 185(8):4912–4920

    Article  CAS  Google Scholar 

  34. Awad F et al (2017) Impact of human monocyte and macrophage polarization on NLR expression and NLRP3 inflammasome activation. PLoS One 12(4):e0175336

    Article  Google Scholar 

  35. Guo Q et al (2016) New mechanisms of tumor-associated macrophages on promoting tumor progression: recent research advances and potential targets for tumor immunotherapy. J Immunol Res 2016:9720912

    PubMed  PubMed Central  Google Scholar 

  36. Park H et al (2001) Enhanced IL-18 expression in common skin tumors. Immunol Lett 79(3):215–219

    Article  CAS  Google Scholar 

  37. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  38. Wang YC et al (2010) Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 70(12):4840–4849

    Article  CAS  Google Scholar 

  39. Yang M et al (2018) An obligatory anaerobic Salmonella typhimurium strain redirects M2 macrophages to the M1 phenotype. Oncol Lett 15(3):3918–3922

    PubMed  PubMed Central  Google Scholar 

  40. Zheng JH et al (2017) Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aak9537

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tourlomousis P et al (2020) Modifying bacterial flagellin to evade Nod-like Receptor CARD 4 recognition enhances protective immunity against Salmonella. Nat Microbiol 5(12):1588–1597

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Author notes

  1. Précis: Salmonella antitumor activity requires functional CASP-1/11 activation, NLRP3 engagement, and recruitment of M1 macrophages to the tumor site. Absence of CASP-1/11 prevents macrophage intratumoral recruitment and hence the antitumor activity.

    Authors

    Corresponding authors

    Correspondence to Jose Alejandro Chabalgoity or María Moreno.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Supplementary Information

    Below is the link to the electronic supplementary material.

    Supplementary file1 (TIF 185 KB)

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Mónaco, A., Chilibroste, S., Yim, L. et al. Inflammasome activation, NLRP3 engagement and macrophage recruitment to tumor microenvironment are all required for Salmonella antitumor effect. Cancer Immunol Immunother 71, 2141–2150 (2022). https://doi.org/10.1007/s00262-022-03148-x

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s00262-022-03148-x

    Keywords

    Navigation