Skip to main content
Log in

The Effect of Chemical Treatments on Lampenflora and a Collembola Indicator Species at a Popular Tour Cave in California, USA

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

Growth of invasive, opportunistic plants (i.e. lampenflora) in popular tour caves is a significant concern for land managers worldwide. Numerous chemicals at various concentrations have been utilized to remove phototrophic lampenflora colonizing artificially lit surfaces within these caves; however formulations, effectiveness, and impacts appear anecdotal and temporally limited. At Crystal Cave, Sequoia National Park, California, we study lampenflora and cave springtail (Tomocerus celsus) response to a single 0.05 ml/cm2 dose of 1.0% sodium hypochlorite, 0.5% sodium hypochlorite, and 15.0% hydrogen peroxide compared to no treatment over the course of one year. Additionally, we explore potential food web impacts resulting from invasive lampenflora in naturally oligotrophic caves by utilizing stable isotope analysis of T. celsus found on and off lampenflora. Time-effect decay models indicate 1.0 and 0.5% sodium hypochlorite effectively eliminate lampenflora in 11 and 21 days, respectively, while lampenflora decay projections exceed 600 days with 15.0% hydrogen peroxide treatment. Repeat surveys of T. celsus indicate a negative response to 1.0% sodium hypochlorite (P = 0.02), and the probability of observing T. celsus was inversely related to the effectiveness of each treatment. Further, T. celsus had similar diets regardless of their lampenflora association (P = 0.92). We conclude that treatments of sodium hypochlorite at or below 0.5% achieve management goals with limited impacts to the presence or diet of a common cave-adapted indicator species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bargmann T, Heegaard E, Hatteland BA, Chipperfield JD, Grytnes JA (2016) Species trait selection along a prescribed fire chronosequence. Insect Conserv Diver 9(5):446–455

    Article  Google Scholar 

  • Barton HA, Northup DE (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud 69(1):163–178

    Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:14065823

  • Betancourt JL, Van Devender TR, Martin PS (1990) Packrat middens: the last 40,000 years of biotic change. University of Arizona Press, Tucson, AZ

  • Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw. 12(5):1–22.

  • Castello M (2014) Species diversity of bryophytes and ferns of lampenflora in grotta gigante (ne italy)/vrstna raznolikost mahov in praproti lampenflore v veliki jami v briscikih (sv italija). Acta Cardiol 43(1):185

    Google Scholar 

  • Cennamo P, Marzano C, Ciniglia C, Pinto G, Cappelletti P, Caputo P, Pollio A (2012) A survey of the algal flora of anthropogenic caves of Campi Flegrei (Naples, Italy) archeological district. J Cave Karst Stud 74(3):243–250

    Article  Google Scholar 

  • Cigna A (2011) The problem of lampenflora in show caves. In Proc. 6th ISCA Congress, SNC of Slovak Republic, Slovak Caves Administration, pp 201-205

  • Despain J (2003) Hidden beneath the mountains: the caves of Sequoia and Kings Canyon national parks. Cave Books, Dayton, OH

  • Despain JD, Stock GM (2005) Geomorphic history of Crystal Cave, Southern Sierra Nevada, California. J Cave Karst Stud 67(2):92–102

    Google Scholar 

  • Environmental Progection Agency (EPA) (2016) The ECOTOXicology knowledgebase. https://cfpub.epa.gov/ecotox/. Accessed 22 Aug 2016

  • Ebenezer V, Lim WA, Ki J-S (2014) Effects of the algicides CuSO4 and NaOCl on various physiological parameters in the harmful dinoflagellate Cochlodinium polykrikoides. J Appl Phycol 26(6):2357–2365

    Article  CAS  Google Scholar 

  • Endlweber K, Ruess L, Scheu S (2009) Collembola switch diet in presence of plant roots thereby functioning as herbivores. Soil Biol Biochem 41(6):1151–1154

    Article  CAS  Google Scholar 

  • Faimon J, Štelcl J, Kubešová S, Zimák J (2003) Environmentally acceptable effect of hydrogen peroxide on cave “lamp-flora”, calcite speleothems and limestones. Environ Pollut 122(3):417–422

    Article  CAS  Google Scholar 

  • The Federal Cave Protection Act (1988) vol 16 U.S.C. 4301

  • Frampton GK (1997) The potential of Collembola as indicators of pesticide usage: evidence and methods from the UK arable ecosystem. Pedobiologia 41(1):179–184

    Google Scholar 

  • Gallao JE, Bichuette ME (2015) Taxonomic distinctness and conservation of a new high biodiversity subterranean area in Brazil. An Acad Bras Ciênc 87(1):209–217

    Article  Google Scholar 

  • Gillieson DS (2011) Management of caves. In: van Beynen PE (ed) Karst management. Springer, New York, pp 141–158

  • Green RT, Painter SL, Sun A, Worthington SR (2006) Groundwater contamination in karst terranes. Water Air Soil Pollut: Focus 6(1–2):157–170

    Article  Google Scholar 

  • Greenslade P (2007) The potential of Collembola to act as indicators of landscape stress in Australia. Anim Prod Sci 47(4):424–434

    Article  Google Scholar 

  • Grobbelaar JU (2000) Lithophytic algae: A major threat to the karst formation of show caves. J Appl Phycol 12(3–5):309–315

    Article  Google Scholar 

  • Hildreth-Werker V, Werker JC (2006) Cave conservation and restoration. National Speleological Society, Huntsville, AL

  • Hopkin SP (1997) Biology of the springtails:(Insecta: Collembola). Oxford University Press, Oxford, UK

  • Hutchins BT, Schwartz BF, Nowlin WH (2014) Morphological and trophic specialization in a subterranean amphipod assemblage. Freshwater Biol 59(12):2447–2461

    Article  Google Scholar 

  • Iliopoulou-Georgoudaki J, Pantazidou A, Theoulakis P (1993) An assessment of cleaning photoautotrophic microflora: the case of Perama cave, Ioannina Greece. Mémoires de Biospéologie 20:117–120

    Google Scholar 

  • Kim SW, An Y-J (2014) Jumping behavior of the springtail Folsomia candida as a novel soil quality indicator in metal-contaminated soils. Ecol Indic 38:67–71

    Article  CAS  Google Scholar 

  • Knezevic SZ, Streibig JC, Ritz C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21(3):840–848

    Article  Google Scholar 

  • Lorch JM, Muller LK, Russell RE, O’Connor M, Lindner DL, Blehert DS (2013) Distribution and environmental persistence of the causative agent of white-nose syndrome, geomyces destructans, in bat hibernacula of the eastern United States. Appl Environ Microbiol 79(4):1293–1301

    Article  CAS  Google Scholar 

  • McCabe-Glynn S, Johnson KR, Strong C, Berkelhammer M, Sinha A, Cheng H, Edwards RL (2013) Variable North Pacific influence on drought in southwestern North America since AD 854. Nat Geosci 6(8):617–621

    Article  CAS  Google Scholar 

  • Mead JI, McGinnis TW, Keeley JE (2006) A Mid-Holocene Fauna from Bear Den Cave, Sequoia National Park, California. Bull South Calif Acad Sci 105(2):43–58

    Google Scholar 

  • Mead JI, Phillips III AM (1981) The late Pleistocene and Holocene fauna and flora of Vulture Cave. The Southwestern Naturalist, Grand Canyon, Arizona, pp 257–288

    Google Scholar 

  • Moore JG (2000) Exploring the highest Sierra. Stanford University Press, Palo Alto, CA

  • Mulec J, Kosi G (2009) Lampenflora algae and methods of growth control. J Cave Karst Stud 71(2):109–115

    CAS  Google Scholar 

  • Mulec J, Kosi G, Vrhovšek D (2008) Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigments. J Cave Karst Stud 70(1):3–12

    CAS  Google Scholar 

  • National Park Service (2005) SEKI Cave diversity inventory. Unpublished raw data

  • Olson R (2006) Control of lamp flora in developed caves. Cave conservation and restoration. National Speleological Society, Huntsville, pp 343–348

    Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18(1):293–320

    Article  Google Scholar 

  • Piano E, Bona F, Falasco E, La Morgia V, Badino G, Isaia M (2015) Environmental drivers of phototrophic biofilms in an Alpine show cave (SW-Italian Alps). Sci Total Environ 536:1007–1018

    Article  CAS  Google Scholar 

  • Quinlan JF, Ewers RO (1989) Subsurface drainage in the Mammoth Cave area. In: White WB, White EL (ed) Karst Hydrology. Springer, New York, pp 65–103

  • Scheu S, Folger M (2004) Single and mixed diets in Collembola: effects on reproduction and stable isotope fractionation. Funct Ecol 18(1):94–102

    Article  Google Scholar 

  • Silva MS, Martins RP, Ferreira RL (2015) Cave conservation priority index to adopt a rapid protection strategy: a case study in Brazilian Atlantic rain forest. Environ Manage 55(2):279–295

    Article  Google Scholar 

  • Smith T, Olson R (2007) A taxonomic survey of lamp flora (Algae and Cyanobacteria) in electrically lit passages within Mammoth Cave National Park, Kentucky. Int J Speleol 36(2):6

    Article  Google Scholar 

  • Stock GM, Anderson RS, Finkel RC (2004) Pace of landscape evolution in the Sierra Nevada, California, revealed by cosmogenic dating of cave sediments. Geology 32(3):193–196

    Article  Google Scholar 

  • Stock GM, Anderson RS, Finkel RC (2005) Rates of erosion and topographic evolution of the Sierra Nevada, California, inferred from cosmogenic 26Al and 10Be concentrations. Earth Surf Proc Land 30(8):985–1006

    Article  CAS  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Vander Zanden MJ, Vadeboncoeur Y (2002) Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83(8):2152–2161

    Article  Google Scholar 

  • Wightman K (2015) Crystal cave report. Sequioa Parks Conservancy, Three Rivers, CA

    Google Scholar 

Download references

Acknowledgements

The authors thank J. Watkins, and A. Esperanza of Sequoia and Kings Canyon National Parks, and K. Wightman and the entire Crystal Cave support staff of the Sequoia Parks Conservancy for supporting the project in many ways. This project was funded by the U.S. National Park Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Meyer.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, E., Seale, L.D., Permar, B. et al. The Effect of Chemical Treatments on Lampenflora and a Collembola Indicator Species at a Popular Tour Cave in California, USA. Environmental Management 59, 1034–1042 (2017). https://doi.org/10.1007/s00267-017-0842-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-017-0842-3

Keywords

Navigation