Skip to main content

Advertisement

Log in

Adaptive Management of Return Flows: Lessons from a Case Study in Environmental Water Delivery to a Floodplain River

  • Published:
Environmental Management Aims and scope Submit manuscript

Abstract

For many floodplain rivers, reinstating wetland connectivity is necessary for ecosystems to recover from decades of regulation. Environmental return flows (the managed delivery of wetland water to an adjacent river) can be used strategically to facilitate natural ecosystem connectivity, enabling the transfer of nutrients, energy, and biota from wetland habitats to the river. Using an informal adaptive management framework, we delivered return flows from a forested wetland complex into a large lowland river in south-eastern Australia. We hypothesized that return flows would (a) increase river nutrient concentrations; (b) reduce wetland nutrient concentrations; (c) increase rates of ecosystem metabolism through the addition of potentially limiting nutrients, causing related increases in the concentration of water column chlorophyll-a; and (d) increase the density and species richness of microinvertebrates in riverine benthic habitats. Our monitoring results demonstrated a small increase in the concentrations of several key nutrients but no evidence for significant ecological responses was found. Although return flows can be delivered from forested floodplain areas without risking hypoxic blackwater events, returning nutrient and carbon-rich water to increase riverine productivity is limited by the achievable scale of return flows. Nevertheless, using return flows to flush carbon from floodplains may be a useful management tool to reduce carbon loads, preparing floodplains for subsequent releases (e.g., mitigating the risk of hypoxic blackwater events). In this example, adaptive management benefited from a semi-formal collaboration between science and management that allowed for prompt decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson M, Gorley RN, Clarke RK (2008) Permanova+ for primer: guide to software and statistical methods. PRIMER-E Ltd., Plymouth, UK

    Google Scholar 

  • Aristi I, Arroita M, Larrañaga A et al. (2014) Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers. Freshw Biol 59:1816–1829. doi:10.1111/fwb.12385

    Article  Google Scholar 

  • Baldwin DS (1999) Dissolved organic matter and phosphorus leached from fresh and “terrestrially” aged river red gum leaves: implications for assessing river-floodplain interactions. Freshw Biol 41:675–685. doi:10.1046/j.1365-2427.1999.00404.x

    Article  CAS  Google Scholar 

  • Baldwin DS, Colloff MJ, Mitrovic SM et al. (2016) Restoring dissolved organic carbon subsidies from floodplains to lowland river food webs: a role for environmental flows? Mar Freshw Res. doi:10.1071/MF15382

  • Baldwin DS, Rees GN, Wilson JS et al. (2012) Provisioning of bioavailable carbon between the wet and dry phases in a semi-arid floodplain. Oecologia 172:539–550. doi:10.1007/s00442-012-2512-8

    Article  Google Scholar 

  • Chen S-K, Jang C-S, Chen S-M, Chen K-H (2011) Effect of N-fertilizer application on return flow water quality from a terraced paddy field in Northern Taiwan. Paddy Water Environ 11:123–133. doi:10.1007/s10333-011-0298-7

    Article  CAS  Google Scholar 

  • Chester H, Norris R (2006) Dams and flow in the Cotter River, Australia: effects on instream trophic structure and benthic metabolism. Hydrobiologia 572:275–286. doi:10.1007/s10750-006-0219-8

    Article  Google Scholar 

  • Commonwealth Environmental Water Office (2014) Commonwealth environmental water use options 2014-15: Murrumbidgee River Valley. Commonwealth of Australia, Canberra

    Google Scholar 

  • Conallin AJ, Smith BB, Thwaites LA et al. (2012) Environmental water allocations in regulated lowland rivers may encourage offstream movements and spawning by common carp, Cyprinus carpio: implications for wetland rehabilitation. Mar Freshw Res 63:865–877. doi:10.1071/MF12044

    Article  Google Scholar 

  • Cook RA, Gawne B, Petrie R et al. (2015) River metabolism and carbon dynamics in response to flooding in a lowland river. Mar Freshw Res 66:919–927. doi:10.1071/MF14199

    Article  CAS  Google Scholar 

  • DIPNR (2004) Water sharing plan for the Murrumbidgee regulated river water source. Department of Infrastructure, Planning, and Natural Resources, Sydney

    Google Scholar 

  • Downes BJ, Barmuta LA, Fairweather PG et al. (2002) Monitoring ecological impacts: concepts and practice in flowing waters. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ellis LE, Jones NE (2013) Longitudinal trends in regulated rivers: a review and synthesis within the context of the serial discontinuity concept. Environ Rev 21:136–148. doi:10.1139/er-2012-0064

    Article  Google Scholar 

  • Gawne B, Merrick C, Williams DG et al. (2007) Patterns of primary and heterotrophic productivity in an arid lowland river. River Res Appl 23:1070–1087. doi:10.1002/rra.1033

    Article  Google Scholar 

  • Gergel SE, Dixon MD, Turner MG (2002) Consequences of human-altered floods: levees, floods, and floodplain forests along the Wisconsin River. Ecol Appl 12:1755–1770. doi:10.1890/1051-0761(2002)012[1755:COHAFL]2.0.CO;2

    Article  Google Scholar 

  • Glazebrook HS, Robertson AI (1999) The effect of flooding and flood timing on leaf litter breakdown rates and nutrient dynamics in a river red gum (Eucalyptus camaldulensis) forest. Aust J Ecol 24:625–635. doi:10.1046/j.1442-9993.1999.00992.x

    Article  Google Scholar 

  • Grace MR, Giling DP, Hladyz S et al. (2015) Fast processing of diel oxygen curves: estimating stream metabolism with BASE (Bayesian single-station estimation). Limnol Oceanogr Methods 13:103–114

    Article  CAS  Google Scholar 

  • Hladyz S, Nielsen DL, Suter PJ, Krull ES (2012) Temporal variations in organic carbon utilization by consumers in a lowland river. River Res Appl. doi:10.1002/rra.1467

  • Jansson R, Nilsson C, Malmqvist B (2007) Restoring freshwater ecosystems in riverine landscapes: the roles of connectivity and recovery processes. Freshw Biol 52:589–596. doi:10.1111/j.1365-2427.2007.01737.x

    Article  Google Scholar 

  • Jenkins KM, Boulton AJ (2003) Connectivity in a dryland river: short-term aquatic microinvertebrate recruitment following floodplain inundation. Ecology 84:2708–2723. doi:10.1890/02-0326

    Article  Google Scholar 

  • Jenkins KM, Iles J, Smith B et al. (2013) Monitoring of ecosystem responses to the delivery of environmental water in the lower Murrumbidgee River and Wetlands, 2011‐2012. Australian Wetlands, Rivers and Landscapes Centre, Sydney

    Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Keith DA, Martin TG, McDonald-Madden E, Walters C (2011) Uncertainty and adaptive management for biodiversity conservation. Biol Conserv 144:1175–1178. doi:10.1016/j.biocon.2010.11.022

    Article  Google Scholar 

  • Kerr JL, Baldwin DS, Whitworth KL (2013) Options for managing hypoxic blackwater events in river systems: a review. J Environ Manage 114:139–147. doi:10.1016/j.jenvman.2012.10.013

    Article  CAS  Google Scholar 

  • King AJ (2004) Density and distribution of potential prey for larval fish in the main channel of a floodplain river: pelagic versus epibenthic meiofauna. River Res Appl 20:883–897. doi:10.1002/rra.805

    Article  Google Scholar 

  • Kingsford RT (2000) Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecol 25:109–127. doi:10.1046/j.1442-9993.2000.01036.x

    Article  Google Scholar 

  • Kingsford RT, Thomas RF (2001) Changing water regimes and wetland habitat on the lower Murrumbidgee floodplain of the Murrumbidgee River in arid Australia. NSW National Parks and Wildlife Service, Hurstville

    Google Scholar 

  • Larson AJ, Belote RT, Williamson MA, Aplet GH (2013) Making monitoring count: project design for active adaptive management. J For 111:348–356. doi:10.5849/jof.13-021

    Google Scholar 

  • Lyon J, Stuart I, Ramsey D, O’Mahony J (2010) The effect of water level on lateral movements of fish between river and off-channel habitats and implications for management. Mar Freshw Res 61:271–278. doi:10.1071/MF08246

    Article  CAS  Google Scholar 

  • McCarthy B, Zukowski S, Whiterod N et al. (2014) Hypoxic blackwater event severely impacts Murray crayfish (Euastacus armatus) populations in the Murray River, Australia. Austral Ecol 39:491–500. doi:10.1111/aec.12109

    Article  Google Scholar 

  • Morrongiello JR, Bond NR, Crook DA, Wong BBM (2011) Eucalyptus leachate inhibits reproduction in a freshwater fish. Freshw Biol 56:1736–1745. doi:10.1111/j.1365-2427.2011.02605.x

    Article  Google Scholar 

  • Murray-Darling Basin Authority (2014) Basin-wide environmental watering strategy. Murray-Darling Basin Authority, Camberra

    Google Scholar 

  • NSW Office of Environment and Heritage (OEH) (2014) Murrumbidgee water resource plan area statement of annual environmental watering priorities 2014–15. NSW Office of Environment and Heritage, Sydney

    Google Scholar 

  • Opperman JJ, Galloway GE, Fargione J et al. (2009) Sustainable floodplains through large-scale reconnection to rivers. Science 326:1487–1488. doi:10.1126/science.1178256

    Article  CAS  Google Scholar 

  • Opperman JJ, Luster R, McKenney BA et al. (2010) Ecologically functional floodplains: connectivity, flow regime, and scale. J Am Water Resour Assoc 46:211–226. doi:10.1111/j.1752-1688.2010.00426.x

    Article  Google Scholar 

  • Poff NL, Allan JD, Palmer MA et al. (2003) River flows and water wars: emerging science for environmental decision making. Front Ecol Environ 1:298–306. doi:10.1890/1540-9295(2003)001[0298:RFAWWE]2.0.CO;2

    Article  Google Scholar 

  • Pringle CM (2001) Hydrologic connectivity and the management of biological reserves: a global perspective. Ecol Appl 11:981–998. doi:10.1890/1051-0761(2001)011[0981:HCATMO]2.0.CO;2

    Article  Google Scholar 

  • Quinn NWT (2009) Environmental decision support system development for seasonal wetland salt management in a river basin subjected to water quality regulation. Agric Water Manag 96:247–254. doi:10.1016/j.agwat.2008.08.003

    Article  Google Scholar 

  • Rowland S (1992) Diet and feeding of Murray cod (Maccullochella peelii) larvae. Proc Linn Soc New South Wales 113:193–201

    Google Scholar 

  • Ryder DS (2004) Response of epixylic biofilm metabolism to water level variability in a regulated floodplain river. J North Am Benthol Soc 23:214–223. doi:10.1899/0887-3593(2004)023<0214:ROEBMT>2.0.CO;2

    Article  Google Scholar 

  • Sammut J, Melville MD, Callinan RB, Fraser GC (1995) Estuarine acidification: impacts on aquatic biota of draining acid sulphate soils. Aust Geogr Stud 33:89–100. doi:10.1111/j.1467-8470.1995.tb00687.x

    Article  Google Scholar 

  • Sheldon F, Boulton AJ, Puckridge JT (2002) Conservation value of variable connectivity: aquatic invertebrate assemblages of channel and floodplain habitats of a central Australian arid-zone river, Cooper Creek. Biol Conserv 103:13–31. doi:10.1016/S0006-3207(01)00111-2

    Article  Google Scholar 

  • Small K, Kopf RK, Watts RJ, Howitt J (2014) Hypoxia, blackwater and fish kills: experimental lethal oxygen thresholds in juvenile predatory lowland river fishes. PLoS ONE 9:e94524. doi:10.1371/journal.pone.0094524

    Article  Google Scholar 

  • Stanford JA, Ward JV (2001) Revisiting the serial discontinuity concept. Regul Rivers Res Manag 17:303–310. doi:10.1002/rrr.659

    Article  Google Scholar 

  • Terrado M, Kuster M, Raldúa D et al. (2007) Use of chemometric and geostatistical methods to evaluate pesticide pollution in the irrigation and drainage channels of the Ebro river delta during the rice-growing season. Anal Bioanal Chem 387:1479–1488. doi:10.1007/s00216-006-1038-5

    Article  CAS  Google Scholar 

  • Vink S, Bormans M, Ford PW, Grigg NJ (2005) Quantifying ecosystem metabolism in the middle reaches of Murrumbidgee river during irrigation flow releases. Mar Freshw Res 56:227–241. doi:10.1071/MF04187

    Article  CAS  Google Scholar 

  • Ward JV, Stanford JA (1995) Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul Rivers Res Manag 11:105–119. doi:10.1002/rrr.3450110109

    Article  Google Scholar 

  • Wassens S, Jenkins K, Spencer J, et al. (2014) Monitoring and evaluating ecological responses to Commonwealth environmental water use in the Murrumbidgee River Valley, in 2013-14. Final Report. Commonwealth Environmental Water Office and Charles Sturt University, Canberra, Albury

  • Wassens S, Thiem J, Spencer J, et al. (2015) Long term intervention monitoring Murrumbidgee selected area 2014-15 technical report. Charles Sturt University, Albury

  • Wassens S, Thiem J, Spencer J, et al. (2016) Commonwealth Environmental Water Office long-term intervention monitoring program Murrumbidgee River systems selected area. 2014-15 technical report. Commonwealth Environmental Water Office and Charles Sturt University, Canberra, Albury

  • Webb JA, Watts RJ, Allan C, Warner AT (2017) Principles for monitoring, evaluation and adaptive management of environmental flows. In: Horne AC, Webb JA, Stewardson MJ, Richter BD, Acreman M (eds) Water for the environment: from policy and science to implementation and management. Elsevier, Cambridge, MA, pp 599–623

  • Whitworth KL, Baldwin DS (2016) Improving our capacity to manage hypoxic blackwater events in lowland rivers: the blackwater risk assessment tool. Ecol Model 320:292–298. doi:10.1016/j.ecolmodel.2015.10.001

    Article  CAS  Google Scholar 

  • Whitworth KL, Baldwin DS, Kerr JL (2012) Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray–Darling Basin, Australia). J Hydrol 450–451:190–198. doi:10.1016/j.jhydrol.2012.04.057

    Article  Google Scholar 

  • Whitworth KL, Kerr JL, Mosley LM et al. (2013) Options for managing hypoxic blackwater in river systems: case studies and framework. Environ Manage 52:837–850. doi:10.1007/s00267-013-0130-9

    Article  Google Scholar 

  • Williams BK (2011a) Adaptive management of natural resources—framework and issues. J Environ Manage 92:1346–1353. doi:10.1016/j.jenvman.2010.10.041

    Article  Google Scholar 

  • Williams BK (2011b) Passive and active adaptive management: approaches and an example. J Environ Manage 92:1371–1378. doi:10.1016/j.jenvman.2010.10.039

    Article  Google Scholar 

  • Williams BK, Brown ED (2014) Adaptive management: from more talk to real action. Environ Manage 53:465–479. doi:10.1007/s00267-013-0205-7

    Article  Google Scholar 

  • Zeug SC, Winemiller KO (2008) Evidence supporting the importance of terrestrial carbon in a large-river food web. Ecology 89:1733–1743. doi:10.1890/07-1064.1

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to many people who assisted with the planning and implementation of this work including various industry partners listed in this manuscript. Bradley Clarke-Wood, Jo Ocock, Carmen Amos, Erin Lennon, and Rohan Rehwinkel assisted with fieldwork. Claire Sives, Phil Morris, and Martin Forrest assisted with microinvertebrate processing. Site figure provided by the Spatial Analysis Network (SPAN) at Charles Sturt University. This research was funded by the Commonwealth Environmental Water Office under the Long-Term Intervention Monitoring program. The views and conclusions expressed in this paper are those of the authors and do not necessarily represent the official policies, either expressed or implied, by the respective organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Wolfenden.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolfenden, B.J., Wassens, S.M., Jenkins, K.M. et al. Adaptive Management of Return Flows: Lessons from a Case Study in Environmental Water Delivery to a Floodplain River. Environmental Management 61, 481–496 (2018). https://doi.org/10.1007/s00267-017-0861-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00267-017-0861-0

Keywords

Navigation