Skip to main content
Log in

Structural and magnetic phase transitions in the synthetic clinopyroxene LiCrGe2O6: a neutron diffraction study between 0.5 and 1473 K

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The pyroxene-type compound LiCrGe2O6, the Li- and Ge-analogue to the silicate mineral kosmochlor, has been synthesized at 1373 K and investigated by neutron diffraction between 0.5 and 1473 K in order to investigate the variation in magnetic and crystal structure with temperature. A structural phase transition from a low-temperature P21/c to a high-temperature C2/c structure was found around 1140 K. The two different structures exhibit different thermal expansion behavior with temperature with a reversal of the largest thermal expansion from the c-axis to the b-axis in the P21/c and C2/c phase, respectively. The structural phase transition is accompanied by a large volume increase of 1.9 % and sharp discontinuities in bond lengths, especially for the Li–O and—to a lesser extent—for the Cr–O bonds. At low temperature, some additional nonlinear changes in lattice parameters occur, which are associated with a magnetoelastic couplings of the lattice. Magnetic ordering is observed below 6 K in the neutron diffraction data. Data could be indexed with k = (0 0 0), giving rise to magnetic space group P21′/c. This model of the magnetic structure has a pure antiferromagnetic arrangement of spins, both within and between the M1 chains. The spins are oriented within the ac plane with an almost nil component along [0 1 0]. A shift of the Cr atom out of the center in the equatorial plane of the octahedron is observed below 6 K and is associated with the magnetic phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Angel R (2011) Win_Strain 4.11. http://www.rossangel.com/home.htm

  • Bertaut EF (1968) Representation analysis of magnetic structures. Acta Crystallogr A A24:217–231

    Article  Google Scholar 

  • Blundell SJ, Steer CA, Pratt FL, Marshall IM, Hayes W, Ward RCC (2003) Detection of magnetic order in the S = 1 chain compound LiVGe2O6 using implanted spin-polarized muons. Phys Rev 67:224411

    Article  Google Scholar 

  • Cámara F, Iezzi G, Oberti R (2003a) HT-XRD study of synthetic ferrian magnesian spodumene: the effect of site dimension on the P21/cC2/c phase transition. Phys Chem Miner 30:20–30

    Article  Google Scholar 

  • Cámara F, Carpenter MA, Domeneghetti MC, Tazzoli V (2003b) Coupling between non-convergent ordering and transition temperature in the C2/c P21/c phase transition in pigeonite. Am Mineral 88:1115–1128

    Google Scholar 

  • Cámara F, Nestola F, Angel RJ, Ohashi H (2009) Spontaneous strain variations through the low-temperature displacive phase transition of LiGaSi2O6 clinoyproxene. Eur J Mineral 21:599–614

    Article  Google Scholar 

  • Goodenough JB (1963) Magnetism and the chemical bond. Wiley, New York

    Google Scholar 

  • Hoelzel M, Senyhyn A, Gilles R, Boysen H, Fuess H (2007) The structure powder diffractometer SPODI. Neutron News 18(4):23–26

    Article  Google Scholar 

  • Janson O, Nénert G, Isobe M, Skourski Y, Ueda Y, Rosner H, Tsirlin AA (2014) Magnetic pyroxenes LiCrGe2O6 and LiCrSi2O6: dimensionality crossover in a non-frustrated S = 3/2 Heisenberg model. arXiv:1402.5054v1

  • Jodlauk S, Becker P, Mydosh JA, Khomskii DI, Lorenz T, Streltsov SV, Hezel DC, Bohaty L (2007) Pyroxenes: a new class of multiferroics. J Phys Condens Matters 19(43):432201

    Article  Google Scholar 

  • Knight KS (1996) A neutron powder diffraction determination of the thermal expansion tensor of crocoite (PbCrO4) between 60 K and 290 K. Mineral Mag 60:963–972

    Article  Google Scholar 

  • Litvin DB (2008) Tables of crystallographic properties of magnetic space groups. Acta Crystallogr A 64:419–424

    Article  Google Scholar 

  • Matsushita Y, Izumi F, Isobe M, Ueda Y (2010) Crystal structures of Cr-based magnetic pyroxenes. Solid State Sci 12(5):676–679

    Article  Google Scholar 

  • Nenert G, Ritter C, Isobe M, Isnard O, Vasiliev AN, Ueda Y (2009a) Magnetic and crystal structures of the one-dimensional ferromagnetic chain pyroxene NaCrGe2O6. Phys Rev B 80:024402

    Article  Google Scholar 

  • Nenert G, Isobe M, Ritter C, Isnard O, Vasiliev AN, Ueda Y (2009b) Magnetic and crystal structures of the magnetoelectric pyroxene LiCrSi2O6. Phys Rev B 79:064416

    Article  Google Scholar 

  • Nenert G, Kim I, Isobe M, Ritter C, Vasiliev AN, Kim KH, Ueda Y (2010a) Magnetic and magnetoelectric study of pyroxene NaCrSi2O6. Phys Rev B81:184408

    Article  Google Scholar 

  • Nenert G, Isobe M, Kim I, Ritter C, Colin CV, Vasiliev AN, Kim KH, Ueda Y (2010b) Interplay between low dimensionality and magnetic frustration in the magnetoelectric pyroxenes LiCrX2O6 (X = Ge, Si). Phys Rev B 82:024429

    Article  Google Scholar 

  • Nestola F, Boffa Ballaran T, Ohashi H (2008) The high-pressure C2/cP21/c phase transition along the LiAlSi2O6–LiGaSi2O6 solid solution. Phys Chem Miner 35:477–484

    Article  Google Scholar 

  • Nestola F, Redhammer GJ, Pamato MG, Secco L, Dal Negro A (2009) High-pressure phase transformation in LiFeGe2O6 pyroxene. Am Mineral 94:616–621

    Article  Google Scholar 

  • Ohashi Y, Burnham CW (1973) Clinopyroxene lattice deformations: the roles of chemical substitutions and temperature. Am Mineral 58:843–849

    Google Scholar 

  • Prencipe M, Tribaudino M, Pavese M, Hoser A, Reehuis M (2000) A single-crystal neutron-diffraction investigation of diopside at 10 K. Can Mineral 38:183–189

    Article  Google Scholar 

  • Redhammer GJ, Roth G (2004a) Structural changes upon the temperature dependent C2/c → P21/c phase transition in LiMe3+Si2O6 clinopyroxenes, Me = Cr, Ga, Fe, V and Sc. Zeitschrift für Kristallographie 219(10):585–605

    Article  Google Scholar 

  • Redhammer GJ, Roth G (2004b) Structural variation and crystal chemistry of LiMe3+Si2O6 clinopyroxenes, Me3+ = Al, Ga, Cr, V, Fe, Sc and In. Z Kristallogr 219:278–294

    Article  Google Scholar 

  • Redhammer GJ, Roth G, Paulus W, André G, Lottermoser W, Amthauer G, Treutmann W, Koppelhuber-Bitschnau B (2001) Crystal and magnetic structure of Li-aegirine LiFe3+Si2O6: a temperature dependent study. Phys Chem Miner 28:337–346

    Article  Google Scholar 

  • Redhammer GJ, Roth G, Ohashi H (2003) Single crystal structure refinement of NaTiSi2O6 clinopyroxene at low temperatures (100 K < T < 298 K). Acta Crystallogr A B59:730–746

    Article  Google Scholar 

  • Redhammer GJ, Roth G, Treutmann W, Paulus W, André G, Pietzonka C, Amthauer G (2008) Magnetic ordering and spin structure in Ca-bearing clinopyroxenes CaM2+(Si, Ge)2O6, M = Fe, Ni Co, Mn. J Solid State Chem 181:3163–3176

    Article  Google Scholar 

  • Redhammer GJ, Roth G, Amthauer G (2009a) Chromium-based clinopyroxene-type germanates NaCrGe2O6 and LiCrGe2O6 at 298 K. Acta Crystallogr A C64:i97–i102

    Google Scholar 

  • Redhammer GJ, Roth G, Treutmann W, Hoelzel M, Paulus W, André G, Pietzonka C, Amthauer G (2009b) The magnetic structure of clinopyroxene-type LiFeGe2O6 and revised data on multiferroic LiFeSi2O6. J Solid State Chem 182:2374–2384

    Article  Google Scholar 

  • Redhammer GJ, Senyshin A, Tippelt G, Pietzonka C, Roth G, Amthauer G (2010a) Magnetic and nuclear structure and thermal expansion of orthorhombic and monoclinic polymorphs of CoGeO3 pyroxene. Phys Chem Miner 37(5):311–332

    Article  Google Scholar 

  • Redhammer GJ, Cámara F, Alvaro M, Nestola F, Tippelt G, Prinz S, Simons J, Roth G, Amthauer G (2010b) Thermal expansion and high temperature P21/cC2/c phase transition in clinopyroxene-type LiFeGe2O6 and comparison to NaFe(Si, Ge)2O6. Phys Chem Miner 37:685–704

    Article  Google Scholar 

  • Redhammer GJ, Senyshyn A, Meven M, Roth G, Prinz S, Pachler A, Tippelt G, Piezonka C, Treutmann W, Hoelzel M, Pedersen B, Amthauer G (2011a) Nuclear and incommensurate magnetic structure of NaFeGe2O6 between 5 K and 298 K and some comparison to NaFeSi2O6. Phys Chem Miner 38:139–157

    Article  Google Scholar 

  • Redhammer GJ, Senyshyn A, Tippelt G, Roth G (2011b) Magnetic spin structure of pyroxene-type MnGeO3. J Phys Condens Matter 23:254202

    Article  Google Scholar 

  • Redhammer GJ, Senyshyn A, Tippelt G, Pietzonka C, Treutmann W, Roth G, Amthauer G (2012) Magnetic and low temperature structural behavior of clinopyroxene-type FeGeO3: a neutron diffraction, magnetic susceptibility and 57Fe Mössbauer study. Am Mineral 97(3):694–706

    Article  Google Scholar 

  • Redhammer GJ, Roth G, Senyshyn A, Tippelt G, Pietzonka C (2013) Crystal and magnetic spin structure of Germanium–Hedenbergite, CaFeGe2O6, and a comparison with other magnetic/magnetoelectric/multiferroic pyroxenes. Z Kristallogr 228(3):140–150

    Article  Google Scholar 

  • Rodríguez-Carvajal J (2001) Recent developments of the program. In: Commission on powder diffraction (IUCr). Newsletter 26:12–19. http://journals.iucr.org/iucr-top/comm/cpd/Newsletters/

  • Schlenker JL, Gibbs GV, Boisen MB Jr (1975) Thermal expansion coefficients for monoclinic crystals: a phenomenological approach. Am Mineral 60:828–833

    Google Scholar 

  • Schonfield PF, Knight KS, van der Houwen JAM, Valsami-Jones E (2004) The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate. Phys Chem Miner 31:606–624

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr A B25:925–946

    Article  Google Scholar 

  • Streltsov SV, Khomskii DI (2008) Electronic structure and magnetic properties of pyroxenes (Li, Na)TM(Si, Ge)2O6: low-dimensional magnets with 90° bonds. Phys Rev B 77:064405

    Article  Google Scholar 

  • Tribaudino M, Mantovani L (2014) Thermal expansion in C2/c pyroxenes: a review and new high-temperature structural data for a pyroxene of composition (Na0.53Ca0.47)(Al0.53Fe0.47)Si2O6 (Jd53Hd47). Mineral Mag 78(2):311–324

    Article  Google Scholar 

  • Tribaudino M, Nestola F, Cámara F, Domeneghetti MC (2002) The high-temperature P21/c↔C2/c phase transition in Fe-free pyroxene (Ca0.15Mg1.85Si2O6): structural and thermodynamic behavior. Am Mineral 87:648–657

    Google Scholar 

  • Tribaudino M, Nestola F, Meneghini C, Bromiley GD (2003) The high-temperature P2/c1–C2/c phase transition in Fe-free Ca-rich P21/c clinopyroxenes. Phys Chem Miner 30:27–535

    Article  Google Scholar 

  • Tribaudino M, Bromiley G, Ohashi H, Nestola F (2009) Synthesis, TEM characterization and thermal behavior of LiNiSi2O6 pyroxene. Phys Chem Miner 36:527–536

    Article  Google Scholar 

  • Willis BTM, Pyror AW (1975) Thermal vibrations in crystallography, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgments

Neutron diffraction experiments have been supported by the European Commission under the 7th Framework Programme through the “Research Infrastructures” action of the “Capacities” Programme, Contract No: CP_CSA_Infra-2008-1.1.1 Number 226507-NIMI3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther J. Redhammer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redhammer, G.J., Senyshyn, A., Tippelt, G. et al. Structural and magnetic phase transitions in the synthetic clinopyroxene LiCrGe2O6: a neutron diffraction study between 0.5 and 1473 K. Phys Chem Minerals 42, 491–507 (2015). https://doi.org/10.1007/s00269-015-0738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0738-9

Keywords

Navigation