Skip to main content
Log in

Spectroscopic properties of \(\hbox {Cr}^{3+}\) in the spinel solid solution \(\hbox {ZnAl}_{2-x}\hbox {Cr}_{x}\hbox {O}_4\)

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The evolution of the structural environment of \(\hbox {Cr}{^{3+}}\) along the solid solution \(\hbox {ZnAl}_{2-x}\hbox {Cr}_{x}\hbox {O}_4\) has been investigated using a multi-analytical approach. X-ray diffraction confirms that the system follows Vegard’s law. Diffuse reflectance spectra show a decrease of the crystal field parameter with the Cr content, usually related to the increase of the Cr–O bond length in a point charge model. This interpretation is discussed and compared to the data obtained by first-principle calculations based on density functional theory. X-ray absorption near edge structure spectra at the Cr K-edge show a pronounced evolution in the pre-edge with the Cr content, characterised by the appearance of a third feature. Calculations enable to assign the origin of this feature to Cr neighbours. The colour change from pink to brownish pink and eventually green along the solid solution has also been quantified by calculating the L*, a*, b* and x, y coefficients in the system defined by the International Commission on Illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ardit M, Cruciani G, Dondi M (2012) Structural relaxation in tetrahedrally coordinated Co\({^{2+}}\) along the gahnite-Co-aluminate spinel solid solution. Am Mineral 97(8–9):1394–1401

    Article  Google Scholar 

  • Ardit M, Dondi M, Cruciani G (2014) On the structural relaxation around \(\text{ Cr }{^{3+}}\) along binary solid solutions. Eur J Mineral 26(3):359–370

    Article  Google Scholar 

  • Balan E, De Villiers JPR, Griet Eeckhout S, Glatzel P, Toplis MJ, Fritsch E, Allard T, Galoisy L, Calas G (2006) The oxidation state of vanadium in titanomagnetite from layered basic intrusions. Am Mineral 91(5–6):953–956

    Article  Google Scholar 

  • Barnes SJ, Roeder P (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42(12):2279–2302

    Article  Google Scholar 

  • Biagioni C, Pasero M (2014) The systematics of the spinel-type minerals: an overview. Am Mineral 99(7):1254–1264

    Article  Google Scholar 

  • Bordage A, Rossano S, Horn AH, Fuchs Y (2012) Site partitioning of \(\text{ Cr }{^{3+}}\) in the trichroic alexandrite BeAl\(_2\text{ O }_4\):\(\text{ Cr }{^{3+}}\) crystal: contribution from X-ray absorption spectroscopy. J Phys Condens Matter 24(22):225, 401

    Article  Google Scholar 

  • Bosi F, Andreozzi GB, Halenius U, Skogby H (2011) Zn-O tetrahedral bond length variations in normal spinel oxides. Am Mineral 96(4):594–598

    Article  Google Scholar 

  • Brigida C, Poli S, Valle M (2007) High-temperature phase relations and topological constraints in the quaternary system MgO-\(\text{ Al }_2\text{ O }{_3}\)-SiO\({_2}\)-Cr\(_2\text{ O }{_3}\): an experimental study. Am Mineral 92(5–6):735–747

    Article  Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory, vol 5. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cabaret D, Bordage A, Juhin A, Arfaoui M, Gaudry E (2010) First-principles calculations of X-ray absorption spectra at the K-edge of 3d transition metals: an electronic structure analysis of the pre-edge. PCCP 12(21):5619–5633

    Article  Google Scholar 

  • Chan K, Sau J, Zhang P, Cohen M (2007) Ab Initio calculations of phonon splitting in antiferromagnetic ZnCr\(_2\text{ O }_4\). Phys Rev B 75(5):054,304

    Article  Google Scholar 

  • Evans BW, Frost B (1975) Chrome-spinel in progressive metamorphisma preliminary analysis. Geochimica et Cosmochimica Acta 39(6–7):959–972

    Article  Google Scholar 

  • Farges F (2009) Chromium speciation in oxide-type compounds: application to minerals, gems, aqueous solutions and silicate glasses. Phys Chem Minerals 36(8):463–481

    Article  Google Scholar 

  • Fernández-Osorio A, Pineda-Villanueva E, Chávez-Fernández J (2012) Synthesis of nanosized (Zn1xCox)Al2O4 spinels: new pink ceramic pigments. Mater Res Bull 47(2):445–452

    Article  Google Scholar 

  • Galoisy L (1996) Local versus average structure around cations in minerals from spectroscopic and diffraction measurements. Phys Chem Minerals 23:217

    Article  Google Scholar 

  • García-Lastra J, Barriuso M, Aramburu J, Moreno M (2005) Origin of the different color of ruby and emerald. Phys Rev B 72(11):113,104

    Article  Google Scholar 

  • García-Lastra J, Aramburu J, Barriuso M, Moreno M (2006) Optical properties of \(\text{ Cr }{^{3+}}\)-doped oxides: different behavior of two centers in alexandrite. Phys Rev B 74(11):115,118

    Article  Google Scholar 

  • Gaudry E, Kiratisin A, Sainctavit P, Brouder C, Mauri F, Ramos A, Rogalev A, Goulon J (2003) Structural and electronic relaxations around substitutional \(\text{ Cr }{^{3+}}\) and Fe\({^{3+}}\) ions in corundum. Phys Rev B 67(9):094,108

    Article  Google Scholar 

  • Gaudry E, Sainctavit P, Juillot F, Bondioli F, Ohresser P, Letard I (2005) From the green color of eskolaite to the red color of ruby: an X-ray absorption spectroscopy study. Phys Chem Minerals 32(10):710–720

    Article  Google Scholar 

  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395,502

    Article  Google Scholar 

  • Gougoussis C, Calandra M, Seitsonen A, Mauri F (2009) First-principles calculations of X-ray absorption in a scheme based on ultrasoft pseudopotentials: from \(\alpha\)-quartz to high-Tc compounds. Phys Rev B 80(7):075,102

    Article  Google Scholar 

  • Halenius U, Andreozzi GB, Skogby H (2010) Structural relaxation around \(\text{ Cr }{^{3+}}\) and the red-green color change in the spinel (sensu stricto)-magnesiochromite (MgAl\(_2\text{ O }_4\)-MgCr\(_2\text{ O }_4\)) and gahnite-zincochromite (ZnAl\(_2\text{ O }_4\)-ZnCr\(_2\text{ O }_4\)) solid-solution series. Am Mineral 95(4):456–462

    Article  Google Scholar 

  • Haskel D (1999) http://www.aps.anl.gov/~haskel/fluo.html

  • Ikeda K, Nakamura Y, Masumoto K, Shima H (1997) Optical spectra of synthetic spinels in the system MgAl\(_2\text{ O }_4\)-MgCr\(_2\text{ O }_4\). J Am Ceram Soc 80(10):2672–2676

    Article  Google Scholar 

  • Irvine TN (1965) Chromian spinel as a petrogenetic indicator: part 1. Theory. Can J Earth Sci 2(6):648–672

    Article  Google Scholar 

  • Irvine TN (1967) Chromian spinel as a petrogenetic indicator: part 2. Petrologic applications. Can J Earth Sci 4(1):71–103

    Article  Google Scholar 

  • Juhin A (2008) Propriétés électroniques et structurales du chrome en impureté dans les cristaux. Approche expérimentale et théorique. Sciences des matériaux. Paris, Paris 6. PhD thesis, thèse de doctorat

  • Juhin A, Calas G, Cabaret D, Galoisy L, Hazemann JL (2007) Structural relaxation around substitutional \(\text{ Cr }{^{3+}}\) in MgAl\(_2\text{ O }_4\). Phys Rev B 76(5):054,105

    Article  Google Scholar 

  • Juhin A, Brouder C, Arrio MA, Cabaret D, Sainctavit P, Balan E, Bordage A, Seitsonen A, Calas G, Eeckhout S, Glatzel P (2008a) X-ray linear dichroism in cubic compounds: the case of \(\text{ Cr }{^{3+}}\) in MgAl\(_2\text{ O }_4\). Phys Rev B 78(19):195,103

    Article  Google Scholar 

  • Juhin A, Calas G, Cabaret D, Galoisy L, Hazemann JL (2008b) Structural relaxation around substitutional \(\text{ Cr }{^{3+}}\) in pyrope garnet. Am Mineral 93(5–6):800–805

    Article  Google Scholar 

  • Kashii N, Maekawa H, Hinatsu Y (1999) Dynamics of the Cation Mixing of MgAl\(_2\text{ O }_4\) and ZnAl\(_2\text{ O }_4\) Spinel. J Am Ceram Soc 82(7):1844–1848

    Article  Google Scholar 

  • Klemme S (2004) The influence of Cr on the garnetspinel transition in the Earth’s mantle: experiments in the system MgOCr\(_2\text{ O }_3\)SiO\(_2\) and thermodynamic modelling. Lithos 77(1–4):639–646

    Article  Google Scholar 

  • König E, Kremer S (1977) Ligand field energy diagrams. Plenum Publishing Corporation, New York

    Book  Google Scholar 

  • Kubelka P, Munk F (1931) Ein Beitrag zur Optik der Farbanstriche. Z Tech Phys 12(11a):593–601

    Google Scholar 

  • Lavina B, Salviulo G, Giusta AD (2002) Cation distribution and structure modelling of spinel solid solutions. Phys Chem Minerals 29(1):10–18

    Article  Google Scholar 

  • Lenaz D, Princivalle F (2005) The crystal chemistry of detrital chromian spinel from the southeastern alps and outer dinarides: the discrimination of supplies from areas of similar tectonic setting? Can Mineral 43(4):1305–1314

    Article  Google Scholar 

  • Malézieux JM, Piriou B (1988) Relation entre la composition chimique et le comportement vibrationnel de spinelles de synthèse et de chromites naturelles en microspectrométrie Raman. Bulletin de minéralogie 111(6):649–669

    Google Scholar 

  • Marfunin AS, Egorova NG, Mishchenko AG (1979) Physics of minerals and inorganic materials: an introduction. Springer, Berlin

    Book  Google Scholar 

  • Martins J, Zunger A (1984) Bond lengths around isovalent impurities and in semiconductor solid solutions. Phys Rev B 30(10):6217–6220

    Article  Google Scholar 

  • Martos M, Martínez M, Cordoncillo E, Escribano P (2007) Towards more ecological ceramic pigments: study of the influence of glass composition on the colour stability of a pink chromium-doped ceramic pigment. J Eur Ceram Soc 27(16):4561–4567

    Article  Google Scholar 

  • O’Neill HSC, Dollase WA (1994) Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr\(_2\text{ O }_4\), ZnCr\(_2\text{ O }_4\), Fe\(_3\text{ O }_4\) and the temperature dependence of the cation distribution in ZnAl\(_2\text{ O }_4\). Phys Chem Minerals 20(8):541–555

    Article  Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  Google Scholar 

  • Perinelli C, Bosi F, Andreozzi GB, Conte AM, Armienti P (2014) Geothermometric study of Cr-spinels of peridotite mantle xenoliths from northern Victoria Land (Antarctica). Am Mineral 99(4):839–846

    Article  Google Scholar 

  • Prim S, García A, Galindo R, Cerro S, Llusar M, Folgueras M, Monrós G (2013) Pink ceramic pigments based on chromium doped M(\(\text{ Al }_{2-x}\text{ Cr }_x\))O\(_4\), M = Mg, Zn, normal spinel. Ceram Int 39(6):6981–6989

    Article  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallography 2(2):65–71

    Article  Google Scholar 

  • Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter 192(1–2):55–69

    Article  Google Scholar 

  • Solé VA, Papillon E (2004) PyMCA: X-Ray Spectra Visualization and Analysis in Python. In: NOBUGS 2004 conference, Paul Scherrer Institute, Villigen PSI, Switzerland

  • Taillefumier M, Cabaret D, Flank AM, Mauri F (2002) X-ray absorption near-edge structure calculations with the pseudopotentials: application to the K edge in diamond and \(\alpha\)-quartz. Phys Rev B 66(19):195,107

    Article  Google Scholar 

  • Wood DL (1968) Optical spectrum of \(\text{ Cr }{^{3+}}\) ions in spinels. J Chem Phys 48(11):5255

    Article  Google Scholar 

  • Wyszecki G, Stiles WS (2008) Color science: concepts and methods, quantitative data and formulae. Wiley, Chichester

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Réseau Francilien sur les oxydes fonctionnels (DIM Oxymore) and the Région Ile-de-France. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities at beamline ID21, through the proposal HG43. The calculations were partly performed using HPC resources from GENCI-IDRIS (100172-2015). L.V. acknowledges M. Chassé for his help with the chromaticity parameters and fruitful discussions. E.R. gratefully acknowledges the support of the Postdoctoral Fellowship of the Hungarian Academy of Sciences, the European Research Council (ERC Starting Grant No. 259709), and the French-Hungarian Balaton-TéT bilateral research program (Project No. TET_11_FR-XTHEOEXP) as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Cormier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 155 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verger, L., Dargaud, O., Rousse, G. et al. Spectroscopic properties of \(\hbox {Cr}^{3+}\) in the spinel solid solution \(\hbox {ZnAl}_{2-x}\hbox {Cr}_{x}\hbox {O}_4\) . Phys Chem Minerals 43, 33–42 (2016). https://doi.org/10.1007/s00269-015-0771-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0771-8

Keywords

Navigation