Skip to main content

Advertisement

Log in

Evaluation of dynamic uniformity and application efficiency of mobile drip irrigation

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Irrigation uniformity, application efficiency and seasonal irrigation uniformity of mobile drip irrigation (MDI) were compared to those of low elevation spray application (LESA) and low energy precision application (LEPA). A center pivot fitted with two sets of MDI (with dripper flow rates of 3.8 L/h and 7.6 L/h), LESA and LEPA was used in this study. Irrigation uniformity tests were conducted in accordance with the American Society of Agricultural Engineers’ standards. Application efficiency was computed as the ratio of depth of water retained in the root zone to that applied. Potential differences in season-long irrigation uniformity were evaluated by analysis of periodically acquired aerial vegetative index data. The coefficient of uniformity of the 3.8 L/h and 7.6 L/h MDI was 93.8% and 93.7%, respectively, and 95.1% for LEPA, and 83.8% for LESA. Application efficiencies for the 3.8 L/h and 7.6 L/h MDI, LEPA and LESA were 76.1, 96.8, 98.4 and 51.2%, respectively. There were no significant differences (p value = 0.5749) in the amount of water stored in the soil profile between MDI, LESA and LEPA, 72 h after irrigation. For three irrigation capacities of 6.2, 3.1 and 1.6 mm/day, there were no significant differences in mean seasonal Advanced Difference Vegetative Index (ADVI) between MDI, LESA and LEPA, with p value = 0.987, 0.999 and 0.999, respectively. A similar observation was made for Normalized Difference Vegetative Index, with p value = 0.998, 0.999 and 0.999, for MDI, LESA and LEPA, respectively. Higher coefficient of uniformity and higher application efficiency for MDI and LEPA indicate that they were more efficient than LESA. These results show that MDI can adapt the high efficiency of traditional drip irrigation to center pivot systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • American Society of Agricultural and Biological Engineers (2003) ANSI/ASAE S436.1 JUN1996 (R2012). Test procedure for determining the uniformity of water distribution of center pivot and lateral move irrigation machines equipped with spray or sprinkler nozzles, pp 932–938

  • American Society of Agricultural Engineers (2014) ASAE EP405.1 APR1988 (R2014): design and installation of microirrigation systems

  • ASAE Standards (1996) EP458. Field evaluation of microirrigation systems, St. Joseph

  • Balafoutis AT, Beck B, Fountas S et al (2017) Smart farming technologies—description, taxonomy and economic impact. In: Pedersen SM, Lind KM (eds) Precision agriculture: technology and economic perspectives front cover. Springer, Berlin, pp 21–78

    Chapter  Google Scholar 

  • Buchleiter GW (1992) Performance of LEPA equipment on center pivot machines. Appl Eng Agric 8:631

    Article  Google Scholar 

  • Camp CR (1998) Subsurface drip irrigation: a review. Trans ASAE 41:1353–1367

    Article  Google Scholar 

  • Camp CR, Sadler EJ, Busscher WJ (1997) A comparison of uniformity measures for drip irrigation systems. Trans ASAE 40:1013–1020. https://doi.org/10.13031/2013.21353

    Article  Google Scholar 

  • Candiago S, Remondino F, De Giglio M et al (2015) Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens 7:4026–4047

    Article  Google Scholar 

  • Connellan G (2013) Water use efficiency for irrigated turf and landscape. CSIRO, Collingwood

    Book  Google Scholar 

  • Fan J, Wu L, Zhang F et al (2017) Evaluation of drip fertigation uniformity affected by injector type, pressure difference and lateral layout. Irrig Drain 66:520–529. https://doi.org/10.1002/ird.2136

    Article  Google Scholar 

  • Goldberg D, Shmueli M (1970) Drip irrigation—a method used under arid and desert conditions of high water and soil salinity. Trans ASAE 13:38–41

    Article  Google Scholar 

  • Goyal MR (2012) Management of drip/trickle or micro irrigation. CRC, Boca Raton

    Book  Google Scholar 

  • Howell TA (2003) Irrigation efficiency. Marcel Dekker, New York

    Google Scholar 

  • Irmak S, Odhiambo LO, Kranz WL, Eisenhauer DE (2011) Irrigation efficiency and uniformity, and crop water use efficiency

  • Jackson RD, Huete AR (1991) Interpreting vegetation indices. Prev Vet Med 11:185–200. https://doi.org/10.1016/S0167-5877(05)80004-2

    Article  Google Scholar 

  • Jovanovic N, Israel S (2012) Critical review of methods for the estimation of actual evapotranspiration in hydrological models. In: Irmak A (ed) Evapotranspiration—remote sensing and modeling. InTech, London, pp 329–350

    Google Scholar 

  • Kincaid DC (2005) Application rates from center pivot irrigation with current sprinkler types. Appl Eng Agric 21:605–610

    Article  Google Scholar 

  • Kisekka I, Oker T, Nguyen G et al (2017) Revisiting precision mobile drip irrigation under limited water. Irrig Sci 35:483–500. https://doi.org/10.1007/s00271-017-0555-7

    Article  Google Scholar 

  • Klocke NL, Currie RS, Tomsicek DJ et al (2011) Corn yield response to deficit irrigation. Trans ASABE 54:931–940

    Article  Google Scholar 

  • Lamm FR (1998) Uniformity of in-canopy center pivot sprinkler irrigation. In: ASAE meeting presentation, Orlando, FL

  • Lamm FR, Rogers DH (2017) Longevity and performance of a subsurface drip irrigation system. Trans ASABE 60:931–939. https://doi.org/10.13031/trans.12237

    Article  CAS  Google Scholar 

  • Lee CO (1920) Irrigation tile

  • Li J, Meng Y, Li B (2007) Field evaluation of fertigation uniformity as affected by injector type and manufacturing variability of emitters. Irrig Sci 25:117–125. https://doi.org/10.1007/s00271-006-0039-7

    Article  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW et al (2006) SAS for mixed models, 2nd edn. SAS, Cary

    Google Scholar 

  • Nautiyal M, Grabow GL, Huffman RL et al (2015) Residential irrigation water use in the central piedmont of North Carolina. II: Evaluation of smart irrigation technologies. J Irrig Drain Eng 141:4014062. https://doi.org/10.1061/(asce)ir.1943-4774.0000820

    Article  Google Scholar 

  • O’Shaughnessy SA, Evett SR, Colaizzi PD, Howell TA (2013) Wireless sensot network effectively controls center pivot irrigation of Sorghum. Appl Eng Agric 29:853–864. https://doi.org/10.13031/aea.29.9921

    Article  Google Scholar 

  • Oker TE, Kisekka I, Sheshukov AY et al (2018) Evaluation of maize production under mobile drip irrigation. Agric Water Manag 210:11–21. https://doi.org/10.1016/J.AGWAT.2018.07.047

    Article  Google Scholar 

  • Ondrasek G (2013) Water scarcity and water stress in agriculture. In: Parvaiz A, Mohd RW (eds) Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, p 403

    Google Scholar 

  • Pathak P, Sahrawat KL, Wani SP et al (2009) Opportunities for water harvesting and supplemental irrigation for improving rainfed agriculture in semi-arid areas. In: Wani SP, Rockström J, Oweis T (eds) Rainfed agriculture : unlocking the potential. CABI, Wallingford, pp 197–221

    Chapter  Google Scholar 

  • Payero JO, Melvin SR, Irmak S, Tarkalson D (2006) Yield response of corn to deficit irrigation in a semiarid climate. Agric Water Manag 84:101–112. https://doi.org/10.1016/j.agwat.2006.01.009

    Article  Google Scholar 

  • Pereira LS, Trout TJ (1999) Irrigation methods. In: van Lier HN, Pereira LS, Steiner FR (eds) CIGR handbook for agricultural engineering. American Society of Agricultural Engineers, St. Joseph, p 374

    Google Scholar 

  • Phene CJ, Howell TA, Beck RD, Sanders DC (1981) A traveling trickle irrigation system for row crops. In: Irrig association technology conference, pp 66–82

  • Phene CJ, Howell TA, Sikorski MD (1985) A traveling trickle irrigation system. In: Advances in irrigation, pp 1–49

    Google Scholar 

  • QGIS Development Team (2018) QGIS Geographic Information System

  • Rajan N, Maas S, Kellison R et al (2015) Emitter uniformity and application efficiency for centre-pivot irrigation systems. Irrig Drain 64:353–361. https://doi.org/10.1002/ird.1878

    Article  Google Scholar 

  • Rawlins SL, Hoffman GJW, Merrill SD (1974) Traveling trickle system. In: Proceedings second international drip irrigation conference. San Diego, pp 184–187

  • Rogers DH, Alam M, Shaw LK (2008) Kansas irrigation trends

  • Scanlon BR, Faunt CC, Longuevergne L et al (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc Natl Acad Sci USA 109:9320–9325. https://doi.org/10.1073/pnas.1200311109

    Article  PubMed  Google Scholar 

  • Schaible GD, Aillery MP (2017) Challenges for US irrigated agriculture in the face of emerging demands and climate change. In: Ziolkowska JR, Peterson JM (eds) Competition for water resources. Elsevier, Oxford, pp 44–79

    Chapter  Google Scholar 

  • Schneider AD (2000) Efficiency and uniformity of the lepa and spray sprinkler methods: a review. Trans ASAE 43:937–944

    Article  Google Scholar 

  • Schneider AD, Howell TA (2000) Surface runoff due to lepa and spray irrigation of a slowly permeable soil. Trans ASAE 43:1089–1095

    Article  Google Scholar 

  • Steward DR, Bruss PJ, Yang X et al (2013) Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110. Proc Natl Acad Sci USA 110:E3477–E3486. https://doi.org/10.1073/pnas.1220351110

    Article  PubMed  Google Scholar 

  • Stewart BA, Howell T (2003) Encyclopedia of water science. Marcel Dekker, New York

    Google Scholar 

  • Stone LR, Klocke NL, Schlegel AJ et al (2011) Equations for drainage component of the field water balance. Appl Eng Agric 27:345–350. https://doi.org/10.13031/2013.37076

    Article  Google Scholar 

  • Stone KC, Bauer PJ, Sigua GC (2016) Irrigation management using an expert system, soil water potentials, and vegetative indices for spatial applications. Trans ASABE 59:941–948. https://doi.org/10.13031/trans.59.11550

    Article  Google Scholar 

  • Sutton BH (2016) Infrared aerial thermograpy for use in monitoring plant health and growth

  • Thokal RT, Mahale DM, Powar AG (2004) Glossary: irrigation, drainage, hydrology and watershed management. Mittal, New Delhi

    Google Scholar 

  • Veihmeyer FJ, Hendrickson AH (1950) Soil moisture in relation to plant growth. Annu Rev Plant Physiol 1:285–304. https://doi.org/10.1146/annurev.pp.01.060150.001441

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by grants and donations from: (1) The Foundation for Food and Agricultural Research (Award # 430871); (2) USDA Project no. 2016-68007-25066, through the NIFA Water for Agriculture Challenge Area; (3) Teeter Irrigation and; (4) Netafim-USA. The authors of the paper are grateful to these organisations/companies for their support. This is contribution number 19-055-J of the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaya Kisekka.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by E. Scudiero.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Change in LEPA nozzle flow rate with increase in distance from center of pivot

Nozzle #

Radius (m)

Flow rate (m3/s)

Area between circles (m2)

Standardized flow rate (m3/s/m2)

1

33.44

4.5989E−05

312

1.4729E−07

2

34.96

4.22727E−05

327

1.29371E−07

3

36.48

0.0000465

341

1.36252E−07

4

38

4.54891E−05

356

1.2785E−07

5

39.52

4.44268E−05

370

1.19967E−07

6

41.04

4.57877E−05

385

1.18977E−07

7

42.56

5.32443E−05

399

1.33321E−07

8

44.08

5.25754E−05

414

1.27027E−07

9

45.6

5.24436E−05

428

1.22413E−07

10

47.12

5.19231E−05

443

1.17225E−07

11

48.64

5.96154E−05

457

1.30318E−07

12

50.16

5.20522E−05

472

1.10284E−07

13

107.92

0.000116899

1024

1.14178E−07

14

109.44

0.000135877

1038

1.30857E−07

15

110.96

0.000127591

1053

1.21183E−07

16

112.48

0.000130781

1067

1.22523E−07

17

114

0.000128374

1082

1.18653E−07

18

115.52

0.000129374

1096

1.17994E−07

19

133.76

0.000156157

1271

1.22888E−07

20

135.28

0.0001674

1285

1.30248E−07

21

136.8

0.000159733

1300

1.22894E−07

22

138.32

0.000171516

1314

1.30501E−07

23

139.84

0.000163477

1329

1.23025E−07

24

141.36

0.000166071

1343

1.23626E−07

Appendix 2: Change in LESA nozzle flow rate with increase in distance from center of pivot

Nozzle #

Distance (m)

Flow (m3/s)

Area between circles

Standardized flow rate (m3/m2)

1

25.84

2.84E−05

240

1.18649E−07

2

27.36

2.37E−05

254

9.30592E−08

3

28.88

3.3E−05

269

1.22806E−07

4

30.4

2.84E−05

283

1.00395E−07

5

31.92

2.67E−05

298

8.97681E−08

6

51.68

4.61E−05

487

9.47116E−08

7

53.2

4.95E−05

501

9.87786E−08

8

54.72

5.35E−05

516

1.03676E−07

9

56.24

5.35E−05

530

1.00835E−07

10

57.76

6.07E−05

545

1.1153E−07

11

59.28

5.35E−05

559

9.55972E−08

12

60.8

5.24E−05

574

9.135E−08

13

110.96

0.000148

1053

1.41015E−07

14

112.48

0.000223

1067

2.08645E−07

15

114

0.000178

1082

1.64675E−07

16

115.52

0.000178

1096

1.62494E−07

17

117.04

0.000157

1111

1.41503E−07

18

118.56

0.000167

1125

1.48407E−07

19

120.08

0.000178

1140

1.56284E−07

20

121.6

0.000178

1155

1.54318E−07

21

123.12

0.000167

1169

1.42876E−07

22

124.64

0.000181

1184

1.52566E−07

23

126.16

0.000179

1198

1.49705E−07

24

127.68

0.000191

1213

1.57308E−07

25

129.2

0.000183

1227

1.49267E−07

26

130.72

0.000188

1242

1.51573E−07

27

132.24

0.000179

1256

1.42114E−07

Appendix 3: Calculation of LESA coefficient of uniformity

Span #

Can #

Distance, S (m)

Left

Can #

Right

Vol (ml)

V i S i

Si × (Vi − Vp)

Vol (ml)

V i S i

Si × (Vi − Vp)

1

6

24

165

3960

316

57

180

4320

175

7

27

180

4860

50

58

180

4860

197

8

30

220

6600

1255

59

255

7650

2469

9

33

160

5280

599

60

180

5940

241

10

36

190

6840

426

61

165

5940

277

11

39

195

7605

657

62

225

8775

2040

2

12

42

130

5460

2022

63

160

6720

533

13

45

250

11250

3233

64

270

12,150

4379

14

48

230

11,040

2489

65

265

12,720

4430

15

51

250

12,750

3664

66

160

8160

648

16

54

200

10,800

1180

67

170

9180

146

17

57

155

8835

1320

68

140

7980

1864

3

31

99

210

20,790

3153

82

180

17,820

723

32

102

210

21,420

3248

83

160

16,320

1295

33

105

180

18,900

194

84

130

13,650

4483

34

108

170

18,360

881

85

245

26,460

7809

35

111

200

22,200

2425

86

200

22,200

3031

36

114

220

25,080

4770

87

170

19,380

308

37

117

200

23,400

2556

88

135

15,795

4411

38

120

135

16,200

5178

89

140

16,800

3924

4

39

123

165

20,295

1618

90

165

20,295

947

40

126

140

17,640

4807

91

150

18,900

2860

41

129

165

21,285

1697

92

190

24,510

2232

42

132

140

18,480

5036

93

140

18,480

4316

43

135

135

18,225

5826

94

160

21,600

1714

Appendix 4: ADVI for 2016 of corn irrigated with MDI, LESA and LEPA on a center pivot at the southwest research and extension center of Kansas State University, near Garden City Kansas

figure a
figure b

Appendix 5: NDVI for 2016 of corn irrigated with MDI, LESA and LEPA on a center pivot at the southwest research and extension center of Kansas State University, near Garden City Kansas

figure c
figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oker, T.E., Kisekka, I., Sheshukov, A.Y. et al. Evaluation of dynamic uniformity and application efficiency of mobile drip irrigation. Irrig Sci 38, 17–35 (2020). https://doi.org/10.1007/s00271-019-00648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-019-00648-0

Navigation