Skip to main content
Log in

Specific Detection and Identification of Xylella fastidiosa Strains Causing Oleander Leaf Scorch Using Polymerase Chain Reaction

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A pair of PCR primers, QH-OLS05/QH-OLS08 specific for strains of Xylella fastidiosa causing oleander leaf scorch was developed. The primers were designed according to a DNA sequence of a randomly amplified polymorphic DNA (RAPD)-polymerase chain reaction (PCR) product unique to oleander strains. The PCR assay using primer pair QH-OLS05/QH-OLS08 allowed quick and simple detection and identification of oleander strains in cultured bacterium and infected plant samples. The assay also can be applied to insect samples. Specific detection and identification of oleander strains of X. fastidiosa by PCR is useful for epidemiologic and etiologic studies of oleander leaf scorch by identifying what plants and insect vectors harbor or carry this particular strain of X. fastidiosa, especially in locations where mixed natural infections by oleander and other strains of X. fastidiosa occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Chen J, Banks D, Jarret RL et al (2000) Use of 16S rDNA sequences as signature characters to identify Xylella fastidiosa. Curr Microbiol 40:29–33

    Article  PubMed  CAS  Google Scholar 

  3. Costa HS, Raetz E, Pinckard TR et al (2004) Plant hosts of Xylella fastidiosa in and near southern California vineyards. Plant Dis 88:1255–1261

    Article  Google Scholar 

  4. da Costa PI, Franco CF, Miranda VS et al (2000) Strains of Xylella fastidiosa rapidly distinguished by arbitrarily primed-PCR. Curr Microbiol 40:279–282

    Article  PubMed  CAS  Google Scholar 

  5. Davis MJ, Raju BC, Brlansky RH et al (1983) Periwinkle wilt bacterium: axenic culture, pathogenicity, and relationships to other Gram-negative, xylem-inhabiting bacteria. Phytopathol 73:1510–1515

    Article  Google Scholar 

  6. Hendson M, Purcell AH, Chen D et al (2001) Genetic diversity of Pierce’s disease strains and other pathotypes of Xylella fastidiosa. Appl Environ Microbiol 67:895–903

    Article  PubMed  CAS  Google Scholar 

  7. Hernandez-Martinez R, Costa HS, Dumenyo CK, Cooksey DA (2006) Differentiation of strains of Xylella fastidiosa infecting grape, almonds, and oleander using a multiprimer PCR assay. Plant Dis 90:1382–1388

    Article  CAS  Google Scholar 

  8. Hopkins DL (1989) Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu Rev Phytopathol 27:271–290

    Article  Google Scholar 

  9. Hopkins DL, Purcell AH (2002) Xylella fastidiosa: cause of Pierce’s disease of grapevine and other emergent diseases. Plant Dis 86:1056–1066

    Article  Google Scholar 

  10. Huang Q (2007) Natural occurrence of Xylella fastidiosa in a commercial nursery in Maryland. Can J Plant Pathol 29:299–303

    Google Scholar 

  11. Huang Q, Sherald JL (2004) Isolation and phylogenetic analysis of Xylella fastidiosa from its invasive alternative host, porcelain berry. Curr Microbiol 48:73–76

    Article  PubMed  CAS  Google Scholar 

  12. Huang Q, Li W, Hartung JS (2003) Association of Xylella fastidiosa with leaf scorch in Japanese beech bonsai. Can J Plant Pathol 25:401–405

    CAS  Google Scholar 

  13. Huang Q, Brlansky RH, Barnes L et al (2004) First report of oleander leaf scorch caused by Xylella fastidiosa in Texas. Plant Dis 88:1049

    Article  Google Scholar 

  14. Huang Q, Bentz J, Sherald JL (2006) Fast, easy, and efficient DNA extraction and one-step PCR for the detection of Xylella fastidiosa in potential insect vectors. J Plant Pathol 88:77–81

    Article  CAS  Google Scholar 

  15. Kamper SM, French WJ, DeKloet SR (1985) Genetic relationships of some fastidious xylem-limited bacteria. Int J Syst Bacteriol 35:185–188

    Google Scholar 

  16. McElrone AJ, Sherald JL, Pooler MR (1999) Identification of alternative hosts of Xylella fastidiosa in the Washington, DC area using nested polymerase chain reaction (PCR). J Arboricul 25:258–263

    Google Scholar 

  17. Mehta A, Rosato YB (2001) Phylogenetic relationships of Xylella fastidiosa strains from different hosts based on 16S rDNA and 16S–23S intergenic spacer sequences. Int J Syst 51:311–318

    CAS  Google Scholar 

  18. Minsavage GV, Thompson CM, Hopkins DL et al (1994) Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathol 84:456–461

    Article  CAS  Google Scholar 

  19. Pooler MR, Hartung JS (1995) Genetic relationships among strains of Xylella fastidiosa from RAPD-PCR data. Curr Microbiol 31:134–137

    Article  PubMed  CAS  Google Scholar 

  20. Pooler MR, Hartung JS (1995) Specific PCR detection and identification of Xylella fastidiosa strains causing citrus variegated chlorosis. Curr Microbiol 31:377–381

    Article  PubMed  CAS  Google Scholar 

  21. Purcell AH, Saunders SR (1999) Fate of Pierce’s disease strains of Xylella fastidiosa in common riparian plants in California. Plant Dis 83:825–830

    Article  Google Scholar 

  22. Purcell AH, Saunders SR, Hendson M et al (1999) Causal role of Xylella fastidiosa in oleander leaf scorch disease. Phytopathol 89:53–58

    Article  CAS  Google Scholar 

  23. Schaad NW, Postnikova E, Lacy G et al (2004) Xylella fastidiosa subspecies X. fastidiosa subsp. piercei, subsp. nov., X. fastidiosa subsp: multiplex subsp. Nov., and X. fastidiosa subsp. pauca subsp. nov. System Appl Microbiol 27:290–300

    Article  CAS  Google Scholar 

  24. Schuenzel EL, Scally M, Stouthamer R, Nunney L (2005) A multigene phylogenetic study of clonal diversity and divergence in North American strains of the plant pathogen Xylella fastidiosa. Appl Environ Microbiol 71:3832–3839

    Article  PubMed  CAS  Google Scholar 

  25. Sherald JL (2001) Xylella fastidiosa: a bacterial pathogen of landscape trees. In: Ash CL (ed) Shade tree wilt diseases. Proceedings of wilt diseases of shade trees: a national conference, 25–28 August 1999. APS Press, St. Paul, MN, pp 191–202

    Google Scholar 

  26. Sherald JL, Wells JM, Hurtt SS, Kostka SJ (1987) Association of fastidious, xylem-inhabiting bacteria with leaf scorch in red maple. Plant Dis 71:930–933

    Article  Google Scholar 

  27. Wells JM, Raju BC, Hung H et al (1987) Xylella fastidiosa gen. nov., sp. nov.: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int J Syst Bacteriol 37:136–143

    Article  CAS  Google Scholar 

  28. Williams JGK, Kubilik AR, Livak KJ et al (1991) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Q. Specific Detection and Identification of Xylella fastidiosa Strains Causing Oleander Leaf Scorch Using Polymerase Chain Reaction. Curr Microbiol 58, 393–398 (2009). https://doi.org/10.1007/s00284-008-9324-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9324-4

Keywords

Navigation