Skip to main content

Advertisement

Log in

The International Symposium on Fungal Stress: ISFUS

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Fungi play central roles in many biological processes, influencing soil fertility, decomposition, cycling of minerals, and organic matter, plant health, and nutrition. They produce a wide spectrum of molecules, which are exploited in a range of industrial processes to manufacture foods, food preservatives, flavoring agents, and other useful biological products. Fungi can also be used as biological control agents of microbial pathogens, nematodes or insect pests, and affect plant growth, stress tolerance, and nutrient acquisition. Successful exploitation of fungi requires better understanding of the mechanisms that fungi use to cope with stress as well as the way in which they mediate stress tolerance in other organisms. It is against this backdrop that a scientific meeting on fungal stress was held in São José dos Campos, Brazil, in October 2014. The meeting, hosted by Drauzio E. N. Rangel and Alene E. Alder-Rangel, and supported by the São Paulo Research Foundation (FAPESP), brought together more than 30 young, mid-career, and highly accomplished scientists from ten different countries. Here we summarize the highlights of the meeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrios GN (1997) Plant Pathology, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Alder-Rangel A (2015) The adventures of  Dr. Donald W. Roberts: International Insect Pathologist (in press)

  • Alston DG, Rangel DEN, Lacey LA, Golez HG, Kim JJ, Roberts DW (2005) Evaluation of novel fungal and nematode isolates for control of Conotrachelus nenuphar (Coleoptera: Curculionidae) larvae. Biol Control 35:163–171

    Article  Google Scholar 

  • Alves FL, Stevenson A, Baxter E, Gillion JLM, Hejazi F, Hayes S, Morrison IEG, Prior BA, McGenity TJ, Rangel DEN, Magan N, Timmis KN, Hallsworth JE (2015) Concomitant osmotic and chaotropicity-induced stresses in Aspergillus wentii: compatible solutes determine the biotic window. Curr Genet. doi:10.1007/s00294-015-0496-8

    Google Scholar 

  • Avalos J, Limón MC (2014) Biological roles of fungal carotenoids Curr Genet doi:10.1007/s00294-014-0454-x

  • Azevedo RFF, Souza RKF, Braga GUL, Rangel DEN (2014) Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress. Fungal Biol 118:990–995. doi:10.1016/j.funbio.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  • Ball P, Hallsworth JE (2015) Water structure and chaotropicity: their uses, abuses and biological implications. Phys Chem Chem Phys 17:8297–8305. doi:10.1039/c4cp04564e

    Article  CAS  PubMed  Google Scholar 

  • Bhaganna P, Volkers RJM, Bell ANW, Kluge K, Timson DJ, McGrath JW, Ruijssenaars HJ, Hallsworth JE (2010) Hydrophobic substances induce water stress in microbial cells. Microb Biotechnol 3:701–716. doi:10.1111/j.1751-7915.2010.00203.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530

    Article  CAS  PubMed  Google Scholar 

  • Braga GUL, Flint SD, Messias CL, Anderson AJ, Roberts DW (2001a) Effect of UV-B on conidia and germlings of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycol Res 105:874–882

    Article  Google Scholar 

  • Braga GUL, Flint SD, Messias CL, Anderson AJ, Roberts DW (2001b) Effects of UV-B irradiance on conidia and germinants of the entomopathogenic hyphomycete Metarhizium anisopliae: a study of reciprocity and recovery. Photochem Photobiol 73:140–146

    Article  CAS  PubMed  Google Scholar 

  • Braga GUL, Flint SD, Miller CD, Anderson AJ, Roberts DW (2001c) Variability in response to UV-B among species and strains of Metarhizium anisopliae isolates from sites at latitudes from 61°N to 54°S. J Invertebr Pathol 78:98–108

    Article  CAS  PubMed  Google Scholar 

  • Braga GUL, Rangel DEN, Flint SD, Anderson AJ, Roberts DW (2006) Conidial pigmentation is important to tolerance against solar-simulated radiation in the entomopathogenic fungus Metarhizium anisopliae. Photochem Photobiol 82:418–422

    Article  CAS  PubMed  Google Scholar 

  • Braga GUL, Rangel DEN, Fernandes EKK, Flint SD, Roberts DW (2015) Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr Genet. doi:10.1007/s00294-015-0483-0

    Google Scholar 

  • Brown SM, Campbell LT, Lodge JK (2007) Cryptococcus neoformans, a fungus under stress. Curr Opin Microbiol 10:320–325. doi:10.1016/j.mib.2007.05.014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown AJP, Brown GD, Netea MG, Gow NAR (2014) Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol 22:614–622. doi:10.1016/j.tim.2014.07.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cliquet S, Despreaux J, Zeeshan K, Ddl Broise, Ash G (2011) Characterization of aggregates produced by the potential mycoherbistat Plectosporium alismatis in submerged culture: germination UV-radiation tolerance and infectivity. Biocontrol Sci Technol 21:1243–1256. doi:10.1080/09583157.2011.604124

    Article  Google Scholar 

  • Costa LB, Rangel DEN, Morandi MAB, Bettiol W (2013) Effects of UV-B radiation on the antagonistic ability of Clonostachys rosea to Botrytis cinerea on strawberry leaves. Biol Control 65:95–100. doi:10.1016/j.biocontrol.2012.12.007

    Article  Google Scholar 

  • Coutinho C, Bernardes E, Felix D, Panek AD (1988) Trehalose as cryoprotectant for preservation of yeast strains. J Biotechnol 7:23–32. doi:10.1016/0168-1656(88)90032-6

    Article  CAS  Google Scholar 

  • Cray JA, Houghton JDR, Cooke LR, Hallsworth JE (2015a) A simple inhibition coefficient for quantifying potency of biocontrol agents against plant-pathogenic fungi Biol Control 81:93–100. doi:10.1016/j.biocontrol.2014.11.006

    Google Scholar 

  • Cray JA, Stevenson A, Ball P, Bankar SB, Eleutherio ECA, Ezeji TC, Singhal RS, Thevelein JM, Timson DJ, Hallsworth JE (2015b) Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms Curr Opin. Biotech 33:228–259. doi:10.1016/j.copbio.2015.02.010

    CAS  Google Scholar 

  • Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531. doi:10.1016/j.mib.2008.09.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daoust RA, Roberts DW (1982) Virulence of natural and insect-passaged strains of Metarhizium anisopliae to mosquito larvae. J Invertebr Pathol 40:107–117

    Article  Google Scholar 

  • Daoust RA, Roberts DW (1983a) Studies on the prolonged storage of Metarhizium anisopliae conidia: effect of growth substrate on conidial survival and virulence against mosquitoes. J Invertebrate Pathol 41:161–170

    Article  CAS  Google Scholar 

  • Daoust RA, Roberts DW (1983b) Studies on the prolonged storage of Metarhizium anisopliae conidia: effect of temperature and relative humidity on conidial viability and virulence against mosquitoes. J Invertebr Pathol 41:143–150

    Article  CAS  PubMed  Google Scholar 

  • Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120. doi:10.1111/j.1574-6968.2008.01076.x

    Article  CAS  PubMed  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759. doi:10.1038/nrmicro2637

    Article  CAS  PubMed  Google Scholar 

  • Eleutherio EC, Araujo PS, Panek AD (1993a) Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta 1156:263–266

    Article  CAS  PubMed  Google Scholar 

  • Eleutherio ECA, Araujo PS, Panek AD (1993b) Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30:591–596. doi:10.1006/cryo.1993.1061

    Article  CAS  PubMed  Google Scholar 

  • Eleutherio E, Panek AD, de Mesquita JF, Trevisol E, Magalhães R (2014) Revisiting yeast trehalose metabolism. Curr Genet doi:10.1007/s00294-014-0450-1

  • Ene IV, Brunke S, Brown AJP, Hube B (2014) Metabolism in fungal pathogenesis cold spring harb. Perspect Med doi:10.1101/cshperspect.a019695

  • Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  Google Scholar 

  • Fernandes EKK, Rangel DEN, Moraes AM, Bittencourt VR, Roberts DW (2007) Variability in tolerance to UV-B radiation among Beauveria spp. isolates. J Invertebr Pathol 96:237–243

    Article  CAS  PubMed  Google Scholar 

  • Fernandes EKK, Rangel DEN, Moraes AML, Bittencourt VREP, Roberts DW (2008) Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. J Invertebr Pathol 98:69–78

    Article  PubMed  Google Scholar 

  • Fernandes EKK, Moraes AML, Pacheco RS, Rangel DEN, Miller MP, Bittencourt VREP, Roberts DW (2009) Genetic diversity among Brazilian isolates of Beauveria bassiana: comparisons with non-Brazilian isolates and other Beauveria species. J Appl Microbiol 107:760–774

    Article  CAS  PubMed  Google Scholar 

  • Fernandes EKK, Keyser CA, Chong JP, Rangel DEN, Miller MP, Roberts DW (2010a) Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. J Appl Microbiol 108:115–128

    Article  CAS  PubMed  Google Scholar 

  • Fernandes EKK, Keyser CA, Rangel DEN, Foster RN, Roberts DW (2010b) CTC medium: a novel dodine-free selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biol Control 54:197–205. doi:10.1016/j.biocontrol.2010.05.009

    Article  Google Scholar 

  • Fernandes EKK, Angelo IC, Rangel DEN, Bahiense TC, Moraes AM, Roberts DW, Bittencourt VR (2011) An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Vet Parasitol 182:307–318. doi:10.1016/j.vetpar.2011.05.046

    Article  PubMed  Google Scholar 

  • Fernandes EKK, Rangel DEN, Braga GUL, Roberts DW (2015) Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Curr Genet

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126. doi:10.1093/jxb/ern059

    Article  CAS  PubMed  Google Scholar 

  • Finlay R, Wallander H, Smits M, Holmstrom S, van Hees P, Lian B, Rosling A (2009) The role of fungi in biogenic weathering in boreal forest soils. Fungal Biol Rev 23:101–106. doi:10.1016/j.fbr.2010.03.002

    Article  Google Scholar 

  • Fuller K, Loros J, Dunlap J (2014) Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet. doi:10.1007/s00294-014-0451-0

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643. doi:10.1099/mic.0.037143-0

    Article  CAS  PubMed  Google Scholar 

  • Hagedorn S, Kaphammer B (1994) Microbial biocatalysis in the generation of flavor and fragrance chemicals. Annu Rev Microbiol 48:773–800. doi:10.1146/annurev.mi.48.100194.004013

    Article  CAS  PubMed  Google Scholar 

  • Hallsworth JE, Magan N (1996) Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 62:2435–2442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hallsworth JE, Prior BA, Nomura Y, Iwahara M, Timmis KN (2003) Compatible solutes protect against chaotrope (ethanol)-induced, nonosmotic water stress. Appl Environ Microb 69:7032–7034. doi:10.1128/aem.69.12.7032-7034.2003

  • Herdeiro RS, Pereira MD, Panek AD, Eleutherio ECA (2006) Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim Biophys Acta Gen Subjects 1760:340–346. doi:10.1016/j.bbagen.2006.01.010

    Article  CAS  Google Scholar 

  • Hernández-Oñate MA, Herrera-Estrella A (2015) Damage response involves mechanisms conserved across plants, animals and fungi. Curr Genet. doi:10.1007/s00294-014-0467-5

  • Hillmann F, Shekhova E, Kniemeyer O (2015) Insights into the cellular responses to hypoxia in filamentous fungi Curr Genet

  • Hohmann S (2015) An integrated view on a eukaryotic osmoregulation system. Curr Genet doi:10.1007/s00294-015-0475-0

  • Huarte-Bonnet C, Juárez MP, Pedrini N (2014) Oxidative stress in entomopathogenic fungi grown on insect-like hydrocarbons. Curr Genet doi:10.1007/s00294-014-0452-z

  • Kaijiang L, Roberts DW (1986) The production of destruxins by the entomogenous fungus, Metarhizium anisopliae var. major. J Invertebr Pathol 47:120–122. doi:10.1016/0022-2011(86)90170-9

    Article  CAS  Google Scholar 

  • Keyser CA, Fernandes EKK, Rangel DEN, Roberts DW (2014) Heat-induced post-stress growth delay: A biological trait of many Metarhizium isolates reducing biocontrol efficacy? J Invertebr Pathol 120:67–73. doi:10.1016/j.jip.2014.05.008

    Article  PubMed  Google Scholar 

  • Li ZZ, Alves SB, Roberts DW, Fan MZ, Delalibera I, Tang J, Lopes RB, Faria M, Rangel DEN (2010) Biological control of insects in Brazil and China: history, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Sci Tech 20:117–136

    Article  Google Scholar 

  • Lovett B, St. Leger R (2014) Stress is the rule rather than the exception for Metarhizium. Curr Genet doi:10.1007/s00294-014-0447-9

  • Mansure JJC, Panek AD, Crowe LM, Crowe JH (1994) Trehalose inhibits ethanol effects on intact yeast cells and liposomes. Biochimica Et Biophysica Acta Biomembranes 1191:309–316. doi:10.1016/0005-2736(94)90181-3

    Article  CAS  Google Scholar 

  • McCarthy WJ, Granados RR, Sutter GR, Roberts DW (1975) Characterization of entomopox virions of the army cutworm, Euxoa auxiliaris (Lepidoptera: Noctuidae). J Invertebr Pathol 25:215–220. doi:10.1016/0022-2011(75)90071-3

    Article  CAS  PubMed  Google Scholar 

  • Medina A, Schmidt-Heydt M, Rodríguez A, Parra R, Geisen R, Magan N (2014) Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi. Curr Genet doi:10.1007/s00294-014-0455-9

  • Ortiz CH, Maia JC, Tenan MN, Braz-Padrao GR, Mattoon JR, Panek AD (1983) Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation-dephosphorylation cascade system. J Bacteriol 153:644–651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2014) Stress response signaling and virulence: insights from entomopathogenic fungi. Curr Genet doi:10.1007/s00294-014-0439-9

  • Panek A (1959) Kinetic study of the formation and the utilization of trehalose by baker’s yeast. C R Hebd Seances Acad Sci 249:333–335

    CAS  PubMed  Google Scholar 

  • Panek A (1962) Synthesis of trehalose by baker’s yeast (Saccharomyces cerevisiae). Arch Biochem Biophys 98:349–355

    Article  CAS  PubMed  Google Scholar 

  • Panek A (1963) Function of trehalose in baker’s yeast (Saccharomyces cerevisiae). Arch Biochem Biophys 100:422–425

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Rangel DEN (2011) Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes. World J Microb Biot 27:1281–1296. doi:10.1007/s11274-010-0584-3

    Article  Google Scholar 

  • Rangel DEN, Correia AdCB (2003) Virulencia de Aphanocladium album (Preuss) Gams e Verticillium lecanii (Zimm.) Viégas (Deuteromycotina: Hyphomycetes) para o percevejo-de-renda da seringueira, Leptopharsa heveae (Drake & Poor) (Hemiptera: Tingidae) Ciência e Agrotecnologia Edicao Especial:1636–1642

  • Rangel DEN, Braga GUL, Anderson AJ, Roberts DW (2005) Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. J Invertebr Pathol 88:116–125

    Article  PubMed  Google Scholar 

  • Rangel DEN, Anderson AJ, Roberts DW (2006) Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased UV-B tolerance. J Invertebr Pathol 93:127–134

    Article  CAS  PubMed  Google Scholar 

  • Rangel DEN, Alston DG, Roberts DW (2008a) Effects of physical and nutritional stress conditions during mycelial growth on conidial germination speed, adhesion to host cuticle, and virulence of Metarhizium anisopliae, an entomopathogenic fungus. Mycol Res 112:1355–1361

    Article  PubMed  Google Scholar 

  • Rangel DEN, Anderson AJ, Roberts DW (2008b) Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycol Res 112:1362–1372

    Article  PubMed  Google Scholar 

  • Rangel DEN, Dettenmaier SJ, Fernandes EKK, Roberts DW (2010a) Susceptibility of Metarhizium spp. and other entomopathogenic fungi to dodine-based selective media. Biocontrol Sci Tech 20:375–389

    Article  Google Scholar 

  • Rangel DEN, Fernandes EKK, Dettenmaier SJ, Roberts DW (2010b) Thermotolerance of germlings and mycelium of the insect-pathogenic fungus Metarhizium spp. and mycelial recovery after heat stress. J Basic Microb 50:344–350

  • Rangel DEN, Fernandes EKK, Braga GUL, Roberts DW (2011) Visible light during mycelial growth and conidiation of Metarhizium robertsii produces conidia with increased stress tolerance. FEMS Microbiol Lett 315:81–86. doi:10.1111/j.1574-6968.2010.02168.x

    Article  CAS  PubMed  Google Scholar 

  • Rangel DEN, Fernandes EKK, Anderson AJ, Roberts DW (2012) Culture of Metarhizium robertsii on salicylic-acid supplemented medium induces increased conidial thermotolerance Fungal Biol-Uk 116:438–442

    CAS  Google Scholar 

  • Rangel DEN, Alder-Rangel A, Dadachova E, Finlay RD, Kupiec M, Dijksterhuis J, Braga GUL, Corrochano LM, Hallsworth JE (2015a) Fungal stress biology: a preface to the   Fungal Stress Responses special edition. Curr Genet. doi:10.1007/s00294-015-0500-3

    Google Scholar 

  • Rangel DEN, Braga GUL, Fernandes EKK, Keyser CA, Hallsworth JE, Roberts DW (2015b) Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr Genet doi:10.1007/s00294-015-0477-y

  • Roberts DW (1966) Toxins from the entomogenous fungus Metarrhizium anisopliae I Production in submerged and surface cultures, and in inorganic and organic nitrogen media. J Invertebr Pathol 8:212–221

    Article  CAS  PubMed  Google Scholar 

  • Roberts DW (1969) Toxins from the entomogenous fungus Metarrhizium anisopliae: Isolation of destruxins from submerged cultures. J Invertebr Pathol 14:82–88. doi:10.1016/0022-2011(69)90012-3

    Article  CAS  Google Scholar 

  • Roberts DW, St. Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70

    Article  CAS  PubMed  Google Scholar 

  • Roberts DW, LeBrun RA, Semel M (1981) Control of the colorado potato beetle with fungi. In: Casagrande RaJL (ed) Advances in potato pest management. Hutchinson and Ross Publ. Co., Stroudsberg, pp 119–137

  • Roberts DW, Rangel DEN, Keyser CA, Bignayan HG, Dettenmaier SJ, Fernandes EKK, Miller MP, Evans EW (2007) The mormon cricket, an old threat in modern day western USA: a search for fungal pathogens. J Anhui Agricul Univ 34:141–148

  • Santi L, Beys da Silva WO, Berger M, Guimaraes JA, Schrank A, Vainstein MH (2010) Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis Toxicon 55:874-880 doi:10.1016/j.toxicon.2009.12.012

  • Santos MP, Dias LP, Ferreira PC, Pasin LA, Rangel DEN (2011) Cold activity and tolerance of the entomopathogenic fungus Tolypocladium spp. to UV-B irradiation and heat. J Invertebr Pathol 108:209–213. doi:10.1016/j.jip.2011.09.001

    Article  PubMed  Google Scholar 

  • Santos R, Stevenson A, de Carvalho CCCR, Grant IR, Hallsworth JE (2015) Extraordinary solute-stress tolerance contributes to the environmental tenacity of mycobacteria. Environ Microbiol Rep. doi:10.1111/1758-2229.12306

    PubMed  Google Scholar 

  • Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44:205–221. doi:10.1080/10408690490464104

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Zucconi L, Isola D, Onofri S (2014) Rock black fungi: excellence in the extremes, from the Antarctic to space. Curr Genet doi:10.1007/s00294-014-0457-7

  • Shalaby S, Horwitz BA (2014) Plant phenolic compounds and oxidative stress: integrated signals in fungal–plant interactions. Curr Genet doi:10.1007/s00294-014-0458-6

  • Singh SK, Pandey A (2013) Emerging approaches in fermentative production of statins. Appl Biochem Biotechnol 171:927–938. doi:10.1007/s12010-013-0400-2

    Article  CAS  PubMed  Google Scholar 

  • Solé C, Nadal-Ribelles M, de Nadal E, Posas F (2014) A novel role for lncRNAs in cell cycle control during stress adaptation. Curr Genet doi:10.1007/s00294-014-0453-y

  • Souza RKF, Azevedo RFF, Lobo AO, Rangel DEN (2014) Conidial water affinity is an important characteristic for thermotolerance in entomopathogenic fungi. Biocontrol Sci Tech 24:448–461. doi:10.1080/09583157.2013.871223

    Article  Google Scholar 

  • St. Leger R, Joshi L, Bidochka MJ, Roberts DW (1996) Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc Natl Acad Sci U S A 93:6349–6354

  • St. Leger RJ, Goettel M, Roberts DW, Staples RC (1991) Prepenetration events during infection of host cuticle by Metarhizium anisopliae. J Invertebr Pathol 58:168–179

  • St. Leger RJ, Joshi L, Roberts D (1998) Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl Environ Microbiol 64:709–713

  • St. Leger RJ, Nelson JO, Screen SE (1999) The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology 145:2691–2699

  • St. Leger RJ (2010) Society for Invertebrate Pathology 2009 Founders’ Lecture Donald W. Roberts-50 Years of leadership in insect pathology. J Invertebr Pathol 105:211–219. doi:10.1016/j.jip.2010.09.021

    Article  PubMed  Google Scholar 

  • Stevenson A, Cray JA, Williams JP, Santos R, Sahay R, Neuenkirchen N, McClure CD, Grant IR, Houghton JDR, Quinn JP, Timson DJ, Patil SV, Singhal RS, Anton J, Dijksterhuis J, Hocking AD, Lievens B, Rangel DEN, Voytek MA, Gunde-Cimerman N, Oren A, Timmis KN, McGenity TJ, Hallsworth JE (2015) Is there a common water-activity limit for the three domains of life? ISME J. doi:10.1038/ismej.2014.219

    PubMed Central  PubMed  Google Scholar 

  • Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144:23–30. doi:10.1016/j.jbiotec.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  • Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: micobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104:1421–1426

    Article  Google Scholar 

Download references

Acknowledgments

The Universidade do Vale do Paraíba in São José dos Campos, SP, Brazil hosted the International Symposium on Fungal Stress (ISFUS) in October 2014 organized by Drauzio E.N. Rangel, Alene Alder-Rangel, Luis M. Corrochano, and John E. Hallsworth  with support from São Paulo Research Foundation (FAPESP). This Fungal Stress Responses special edition of Current Genetics was inspired by the International Symposium on Fungal Stress and invited by Stefan Hohmann, former Editor-in-Chief of Current Genetics. This work was supported by grants of the Brazilian National Council for Scientific and Technological Development (CNPq) 473104/2008-3, 478899/2010-6, PQ2 302312/2011-0, and PQ1D 308436/2014-8 for D.E.N.R. This review article was supported by a grant from São Paulo Research Foundation (FAPESP) of Brazil #2010/06374-1, 2013/50518-6 for D.E.N.R. and 2012/15204-8 for G.U.L.B. This review article was supported in part by a grant from FAPESP # 2014/01229-4. This work was also supported by European funds (European Regional Development Fund, ERDF), and the Spanish Ministerio de Educación y Ciencia (BIO2012-38520) for L.M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drauzio E. N. Rangel.

Additional information

Communicated by D. E. N. Rangel.

This article is part of the Special Issue “Fungal Stress Responses”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rangel, D.E.N., Alder-Rangel, A., Dadachova, E. et al. The International Symposium on Fungal Stress: ISFUS. Curr Genet 61, 479–487 (2015). https://doi.org/10.1007/s00294-015-0501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0501-2

Keywords

Navigation