Skip to main content
Log in

Cryobiotechnology of apple (Malus spp.): development, progress and future prospects

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Cryopreservation provides valuable genes for further breeding of elite cultivars, and cryotherapy improves the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry.

Abstract

Apple (Malus spp.) is one of the most economically important temperate fruit crops. Wild Malus genetic resources and existing cultivars provide valuable genes for breeding new elite cultivars and rootstocks through traditional and biotechnological breeding programs. These valuable genes include those resistant to abiotic factors such as drought and salinity, and to biotic factors such as fungi, bacteria and aphids. Over the last three decades, great progress has been made in apple cryobiology, making Malus one of the most extensively studied plant genera with respect to cryopreservation. Explants such as pollen, seeds, in vivo dormant buds, and in vitro shoot tips have all been successfully cryopreserved, and large Malus cryobanks have been established. Cryotherapy has been used for virus eradication, to obtain virus-free apple plants. Cryopreservation provided valuable genes for further breeding of elite cultivars, and cryotherapy improved the production of virus-free plants in Malus spp., thus assisting the sustainable development of the apple industry. This review provides updated and comprehensive information on the development and progress of apple cryopreservation and cryotherapy. Future research will reveal new applications and uses for apple cryopreservation and cryotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Apical dome

ALCSV:

Apple leaf chlorotic spot virus

ApMV:

Apple mosaic virus

ASGV:

Apple stem grooving virus

ASPV:

Apple stem pitting virus

BA:

N6-benzyladenine

DMSO:

Dimethyl sulfoxide

FWB:

Fresh weight basis

GA3 :

Gibberellic acid 3

IBA:

Indole-3-butyric acid

ISSR:

Inter-simple sequence repeat

JKI:

Julius Kühn Institute

LN:

Liquid nitrogen

LNV:

Liquid nitrogen vapor

LP:

Leaf primordium

MS:

Murashige and Skoog

NLGRP:

National Laboratory for Genetic Resources Preservation

PVS:

Plant vitrification solution

PVS2:

Plant vitrification solution 2

PVS3:

Plant vitrification solution 3

RAPD:

Random amplified polymorphic DNA

RBDV:

Raspberry bushy dwarf virus

RH:

Relative humidity

TTC:

2, 3, 5-triphenyl tetrazolium chloride solution

USDA:

United States Department of Agriculture

References

  • Afunian MR, Goodwin PH, Hunter DM (2004) Linkage of Vfa4 in Malus × domestica and Malus floribunda with Vf resistance to the apple scab pathogen Venturia inaequalis. Plant Pathol 53:461–467

    Article  CAS  Google Scholar 

  • Akihama T, Omura M (1986) Preservation of fruit tree pollen. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 1: trees. Springer, Berlin, pp 101–111

    Google Scholar 

  • Bakke AL, Richey HW, Reeves K (1926) Germination and storage of apple seeds. Agri Exp Station Iowa State College of Agriculture and Mechanic Arts. Research Bulletin No. 97. Ames, Iowa, pp 243–255

  • Baldo A, Norelli JL, Farrell RE Jr, Bassett CL, Aldwinckle HS, Malnoy M (2010) Identification of genes differentially expressed during interaction of resistant and susceptible apple cultivars (Malus × domestica) with Erwinia amylovora. BMC Plant Biol. https://doi.org/10.1186/1471-2229-10-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Benelli C, De Carlo A, Engelmann F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol Adv 31:175–185

    Article  CAS  PubMed  Google Scholar 

  • Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit Rev Plant Sci 27:141–219

    Article  CAS  Google Scholar 

  • Bilavčík A, Zámečník J, Grospietsch M, Faltus M, Jadrná P (2012) Dormancy development during cold hardening of in vitro cultured Malus domestica, Borkh. plants in relation to their frost resistance and cryotolerance. Trees 26:1181–1192

    Article  CAS  Google Scholar 

  • Bilavčík A, Zámečník J, Faltus M (2015) Cryotolerance of apple tree bud is independent of endodormancy. Front Plant Sci 6:695. https://doi.org/10.3389/fpls.2015.00695

    Article  PubMed  PubMed Central  Google Scholar 

  • Burritt DJ (2008) Efficient cryopreservation of adventitious shoots of Begonia × erythrophylla using encapsulation–dehydration requires pretreatment with both ABA and proline. Plant Cell Tiss Org Cult 95:209–215

    Article  CAS  Google Scholar 

  • Chakrabarty D, Hahn EJ, Yoon YJ, Paek KY (2003) Micropropagation of apple rootstock M.9 EMLA using bioreactor. J Hort Sci Biotechnol 78:605–609

    Article  CAS  Google Scholar 

  • Condello E, Caboni E, Andrè E, Piette B, Druart P, Swennen R, Panis B (2011) Cryopreservation of apple in vitro axillary buds using droplet-vitrification. CryoLetters 32:175–185

    CAS  PubMed  Google Scholar 

  • Crosby JA, Janick J, Pecknold PC, Korban SS, O’Connor PA, Ries SM, Goffreda J, Voordeckers A (1992) Breeding apples for scab resistance: 1945–1990. Fruit Var J 46:145–166

    Google Scholar 

  • Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipids bilayers and proteins by sugars. Biochem J 242:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobránszki J, Teixeira da Silva JA (2010) Micropropagation of apple—a review. Biotechnol Adv 28:462–488

    Article  PubMed  CAS  Google Scholar 

  • Dobránszki J, Teixeira da Silva JA (2013) In vitro shoot regeneration from transverse thin cell layers of apple leaves in response to various factors. J Horti Sci Biotechnol 88:60–66

    Article  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

    Article  Google Scholar 

  • Fahrentrapp J, Broggini GAL, Kellerhals M, Peil A, Richter K, Zini E, Gessler C (2013) A candidate gene for fire blight resistance in Malus × robusta 5 is coding for a CC–NBS–LRR. Tree Genet Gen 9:237–251

    Article  Google Scholar 

  • Fahy GM, MacFarlande DR, Angell CA, Meryman HT (1984) Vitrification as an approach to cryopreservation. Cryobiology 21:413–426

    Google Scholar 

  • Faltus M, Bilavcik A, Zamecnik J, Domkarova J, Svoboda P (2007) Cryobanking of potato and hop germplasm in the Czech Republic. CryoLetters 29:86

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2017) FAOSTAT Production Database. http://faostat.fao.org. Accessed 20 Oct 2017

  • Feng C-H, Cui Z-H, Li B-Q, Chen L, Ma Y-L, Zhao Y-H, Wang Q-C (2013) Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration. Plant Cell Tiss Org Cult 112:369–378

    Article  CAS  Google Scholar 

  • Feng C-H, Li B-Q, Hu L-Y, Wang M-R, Wang Q-C (2014) A comparison of two cryogenic protocols in cryopreservation of apple shoot tips. Acta Hort 1039:161–172

    Article  Google Scholar 

  • Fita A, Rodríguez-Burruezo A, Boscaiu M, Prohens J, Vicente O (2015) Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front Plant Sci 6:978. https://doi.org/10.3389/fpls.2015.00978

    Article  PubMed  PubMed Central  Google Scholar 

  • Flachowsky H, Peil A, Rollins J, Hanke MV (2008) Improved fire blight resistance in transgenic apple lines by constitutive overexpression of the mbr4 gene of Malus baccata. Acta Hortic 793:287–291

    Article  CAS  Google Scholar 

  • Forni C, Braglia R, Beninati S, Lentini A, Ronci M, Urbani A, Provenzano B, Frattarelli A, Tabolacci C, Damiano C (2010) Polyamine concentration, transglutaninase activity and changes in protein synthesis during cryopreservation of shoot tips of apple variety Annurca. CryoLetters 31:413–425

    CAS  PubMed  Google Scholar 

  • Forsline PL, McFerson JR, Towill LE (1998a) Development of base and active collections of Malus germplasm with cryopreserved dormant buds. Acta Hortic 484:75–78

    Article  Google Scholar 

  • Forsline PL, Towill LE, Waddell JW, Stushnoff C, Lamboy WF, McFerson JR (1998b) Recovery and longevity of cryopreserved dormant apple buds. J Am Soc Hortic Sci 123:365–370

    Google Scholar 

  • Forsline PL, Aldwinckle HS, Dickson EE, Luby JJ, Hokanson SC (2010) Collection, maintenance, characterization and utilization of wild apples of central Asia. Hortic Rev 29:1–58

    Google Scholar 

  • Gardiner SE, Norelli JL, de Silva N, Fazio G, Peil A, Malnoy M, Horner M, Bowatte D, Carlisle C, Wiedow C, Wan Y, Bassett CL, Baldo AM, Celton J-M, Richter K, Aldwinckle HS, Bus VGM (2012) Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions. BMC Genet 13:25. https://doi.org/10.1186/1471-2156-13-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Gupta S, Rana JC (2015) Cryopreservation of apple (Malus spp.) winter buds. Ind J Hortic 72:553

    Article  Google Scholar 

  • Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709

    Article  CAS  PubMed  Google Scholar 

  • Hadidi A, Barba M (2011) Economic impact of pome and stone fruit viruses and viroids. In: Hadidi A, Barba M, Candresse TH, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. APS, St. Paul, pp 1–7

    Google Scholar 

  • Halmagyi A, Deliu C, Isac V (2010a) Cryopreservation of Malus cultivars: comparison of two droplet protocols. Sci Hortic 124:387–392

    Article  CAS  Google Scholar 

  • Halmagyi A, Vălimăreanu S, Coste A, Deliu C, Isac V (2010b) Cryopreservation of Malus shoot tips and subsequent plant regeneration. Romanian Biotechnol Lett 15:79–85

    CAS  Google Scholar 

  • Hao YJ, Deng XX (2003) Genetically stable regeneration of apple plants from slow growth. Plant Cell Tiss Org Cult 72:253–260

    Article  CAS  Google Scholar 

  • Hao YJ, Liu QL, Deng XX (2001) Effect of cryopreservation on apple genetic resources at morphological, chromosomal, and molecular levels. Cryobiology 43:46–53

    Article  CAS  PubMed  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22

    PubMed  Google Scholar 

  • Hawkes JG, Maxted N, Ford-Lloyd BV (2000) Field gene banks, botanic gardens, in vitro, DNA and pollen conservation. In: The ex situ conservation of plant genetic resources. Springer, Dordrecht, pp 92–107

    Chapter  Google Scholar 

  • Hegedus A (2006) Review of the self-incompatibility in apple (Malus × domestica Borkh. Syn. Malus pumila Mill.). Int J Hortic Sci 12:31–36

    Google Scholar 

  • Höfer M (2015) Cryopreservation of winter-dormant apple buds: establishment of a duplicate collection of Malus, germplasm. Plant Cell Tiss Org Cult 121:647–656

    Article  CAS  Google Scholar 

  • Horner MB, Richter K, Peil A, Bus VGM (2015) Comparison of fire blight resistance screening protocols in two international breeding programmes. N Zeal Plant Prot 68:275–281

    CAS  Google Scholar 

  • Jenderek MM, Forsline P, Postman J, Stove E, Ellis D (2011) Effect of geographical location, year, and cultivar on survival of Malus sp. dormant buds stored in vapors of liquid nitrogen. HortScience 46:1230–1234

    Google Scholar 

  • Jiang A, Zhang SW, Sun YW, Chu XR, Zhao Y, Xu XF, Kong J (2010) Expression analysis of WRKY family in response to salt stress in Malus zumi Mats. Acta Hortic Sin 37(8):1213–1219

    CAS  Google Scholar 

  • Jiang Y, Li L, Zhao Y (2013) Cloning and expression analysis of salt stress MzSTO gene from Malus zumi Mats. J China Agric Univ 18(1):88–93

    CAS  Google Scholar 

  • Jurick WM, Janisiewicz WJ, Saftner RA, Vico I, Gaskins VL, Park E, Forsline PL, Fazio G, Conway WS (2011) Identification of wild apple germplasm (Malus spp.) accessions with resistance to the postharvest decay pathogens Penicillium expansum and Colletotrichum acutatum. Plant Breed 13:2

    Google Scholar 

  • Katano M, Ishihara A, Sakai A (1983) Survival of dormant apple shoot tips after immersion in liquid nitrogen. HortScience 18:707–708

    Google Scholar 

  • Keller ERJ (2007) Cryopreservation for maintenance of plant germplasm in Germany. Adv Hort Sci 21:228–231

    Google Scholar 

  • King GJ, Tartarini S, Brown L, Gennari F, Sansavini S (1999) Introgression of the Vf source of scab resistance and distribution of linked marker alleles within the Malus gene pool. Theor Appl Genet 99:1039–1046

    Article  CAS  Google Scholar 

  • Knight RL, Alston FH (2011) Sources of field immunity to mildew (Podosphaera leucotricha) in apple. Genome 10:294–298

    Google Scholar 

  • Komjanc M, Festi S, Rizzotti L, Cattivelli L, Cervone F, De Lorenzo GA (1999) leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus × domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Mol Biol 40:945–957

    Article  CAS  PubMed  Google Scholar 

  • Kost ThD, Gessler C, Jänsch M, Flachowsky H, Patocchi A, Broggini GAL (2015) Development of the first cisgenic apple with increased resistance to fire blight. PLoS One. https://doi.org/10.1371/journal.pone.0143980

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovalchuk I, Lyudvikova G, Volgina M, Reed BM (2009) Medium, container and genotype all influence in vitro cold storage of apple germplasm. Plant Cell Tiss Org Cult 96:127–136

    Article  Google Scholar 

  • Kovalchuk I, Turdiev T, Mukhitdinova Z, Frolov S, Reed BM, Kairova G (2014) New techniques for rapid cryopreservation of dormant vegetative buds. Acta Hortic 1039:137–146

    Article  Google Scholar 

  • Kuo CC, Lineberger BD (1985) Survival of in vitro culture tissues of Jonathan apples exposed to − 196 °C. HortScience 20:764–767

    Google Scholar 

  • Kushnarenko SV, Romadanova NV, Reed BM (2009) Cold acclimation improves regrowth of cryopreserved apple shoot tips. CryoLetters 30:47–54

    CAS  PubMed  Google Scholar 

  • Kushnarenko S, Salnikov E, Nurtazin M, Mukhitdinova Z, Rakhimbaev I, Reed BM (2010a) Characterization and cryopreservation of Malus sieversii seeds. Asian Aust J Plant Sci Biotechnol 4:5–9

    Google Scholar 

  • Kushnarenko S, Kovalchuk I, Mukhitdinova Z, Rakhimova E, Reed BM (2010b) Ultrastructure study of apple meristem cells during cryopreservation. Asian Aust J Plant Sci Biotechnol 4:10–20

    Google Scholar 

  • Laimer M, Barba M (2011) Elimination of systemic pathogens by thermotherapy, tissue culture, or in vitro micrografting. In: Hadidi A, Barba M, Candresse Th, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. APS, St. Paul, pp 389–393

    Google Scholar 

  • Lambardi M, Benelli C, De Carlo A, Previati A (2009) Advances in the cryopreservation of fruit plant germplasm at the CNR-IVALSA Institute of Florence. Acta Hort 839:237–244

    Article  Google Scholar 

  • Lambardi M, Benelli C, De Carlo A, Previati A, Ozudogru EA, Ellis D (2011) Cryopreservation of ancient apple cultivars of Veneto: a comparison between PVS2-vitrification and dormant-bud techniques. Acta Hortic 908:191–198

    Article  CAS  Google Scholar 

  • Li QT, Zhao Y, Zhou QY, Huang LF, Jiang YZ, Chen H, Kong J (2013) A genome-wide expression profile of salt-responsive genes in the apple rootstock Malus zumi. Intern J Mol Sci 14:21053–21070

    Article  CAS  Google Scholar 

  • Li B-Q, Feng C-H, Hu L-Y, Wang M-R, Chen L, Wang Q-C (2014) Shoot regeneration and cryopreservation of shoot tips of apple (Malus) by encapsulation–dehydration. In Vitro Cell Dev Biol Plant 50:357–368

    Article  CAS  Google Scholar 

  • Li B-Q, Feng C-H, Wang M-R, Hu L-Y, Volk GM, Wang Q-C (2015) Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures. J Biotechnol 214:182–191

    Article  CAS  PubMed  Google Scholar 

  • Li B-Q, Feng C-H, Hu L-Y, Wang M-R, Wang Q-C (2016) Shoot tip culture and cryopreservation for eradication of Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV) from apple rootstocks ‘M9’ and ‘M26’. Ann Appl Biol 168:142–150

    Article  CAS  Google Scholar 

  • Liu Y, Wang X, Liu L (2004) Analysis of genetic variation in surviving apple shoots following cryopreservation by vitrification. Plant Sci 166:677–685

    Article  CAS  Google Scholar 

  • Liu YG, Liu LX, Wang L, Gao AY (2008) Determination of genetic stability in surviving apple shoots following cryopreservation by vitrification. CryoLetters 29:7–14

    PubMed  Google Scholar 

  • Lundergan C, Janick J (1979) Low temperature storage of in vitro apple shoots. HortScience 14:514

    Google Scholar 

  • Magyar-Tábori K, Dobránszki J, Teixeira da Silva JA, Bulley SM, Hudák I (2010) The role of cytokinins in shoot organogenesis in apple. Plant Cell Tiss Org Cult 101:251–267

    Article  CAS  Google Scholar 

  • Malnoy M, Borejszawysocka EE, Aldwinckle HS, Jin QL, He SY (2006) Transgenic apple lines over-expressing the apple gene MpNPR1 have increased resistance to fire blight. Acta Hortic 704:521–526

    Article  Google Scholar 

  • Malnoy M, Jin Q, Borejsza-Wysocka EE, He SY, Aldwinckle HS (2007) Overexpression of the apple MpNPR1 gene confers increased disease resistance in Malus × domestica. Mol Plant Microbe Inter 20:1568–1580

    Article  CAS  Google Scholar 

  • Markussen T, Kruger J, Schmidt H, Duemann F (1995) Identification of PCR-based markers linked to the powdery-mildew-resistance gene Pli from Malus robusta in cultivated apple. Plant Breed 114:530–534

    Article  CAS  Google Scholar 

  • Martínez-Gómez P, Gradziel TM, Ortega E, Dicenta F (2002) Low temperature storage of almond pollen. HortScience 37:691–692

    Google Scholar 

  • Matsumoto T, Sakai A, Yamada K (1995) Cryopreservation of in vitro grown apical meristems of lily by vitrification. Plant Cell Tiss Org Cult 41:237–241

    Article  CAS  Google Scholar 

  • Michalak M, Plitta-Michalak BP, Chmielarz P (2015) Desiccation tolerance and cryopreservation of wild apple (Malus sylvestris) seeds. Seed Sci Technol 43:480–491

    Article  Google Scholar 

  • Momol MT, Forsline PL, Aldwinckle HS, Lamboy WF (1999) Fire blight resistance and horticultural evaluation of wild Malus populations from Central Asia. Acta Hortic 489:229–234

    Article  Google Scholar 

  • Moriya S, Iwanami H, Takahashi S, Kotoda N, Suzaki K, Yamamoto T, Abe K (2010) Genetic mapping of the crown gall resistance gene of the wild apple Malus sieboldii. Tree Genet Genom 6:195–203

    Article  Google Scholar 

  • Mornya PMP, Cheng FY (2013) Seasonal changes in endogenous hormone and sugar contents during bud dormancy in tree peony. J Appl Hortic 15:159–165

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Niino T, Sakai A (1992) Cryopreservation of alginate-coated in vitro-grown shoot tips of apple, pear and mulberry. Plant Sci 87:199–206

    Article  CAS  Google Scholar 

  • Niino T, Sakai A, Yakuwa H, Nojiri K (1992) Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification. Plant Cell Tiss Org Cult 28:261–266

    Article  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  • Nougarède A, Silveira CE, Rondet P (1996) In nature dormant buds and in vitro dormant-like buds of Fraxinus excelsior L. Protoplasma 190:16–24

    Article  Google Scholar 

  • Oka S, Yakuwa H, Sate K, Niino T (1991) Survival and shoot formation in vitro of pear winter buds cryopreserved in liquid nitrogen. HortScience 26:65–66

    Google Scholar 

  • Pagliarani G, Dapena E, Miñarro M, Denancé C, Lespinasse Y, Rat-Morris E, Troggio M, Durel CE, Tartarini S (2016) Fine mapping of the rosy apple aphid resistance locus dp-fl, on linkage group 8 of the apple cultivar ‘florina’. Tree Genet Genom 12:1–12

    Article  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    Article  CAS  Google Scholar 

  • Parfitt DE, Almehdi AA (1984) Liquid nitrogen storage of pollen from five cultivated Prunus species. HortScience 19:69–70

    Google Scholar 

  • Paul H, Daigny G, Sangwannorreel BS (2000) Cryopreservation of apple (Malus × domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19:768–774

    Article  CAS  Google Scholar 

  • Peil A, Garcia-Libreros T, Richter K, Trognitz FC, Trognitz B, Hanke M-V, Flachowsky H (2007) Strong evidence for a fire blight resistance gene of Malus robusta located on linkage group 3. Plant Breed 126:470–475

    Article  CAS  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Fischer M (2009) Breeding Apple (Malus × domestica Borkh). In: Jain SM, Priyadarshan PM (eds), Breeding plantation tree crops: temperate species. Springer Science + Business Media, Berlin, pp 35–81

    Google Scholar 

  • Perveen A, Khan SA (2008) Maintenance of pollen germination capacity of Malus pumila L., (Rosaceae). Pak J Bot 40:963–966

    Google Scholar 

  • Poisson AS, Berthelot P, Bras CL, Grapin A, Vergne E, Chevreau E (2016) A droplet-vitrification protocol enabled cryopreservation of doubled haploid explants of Malus × domestica, Borkh. ‘Golden delicious’. Sci Hort 209:187–191

    Article  Google Scholar 

  • Pritchard HW, Nadarajan J (2008) Cryopreservation of orthodox (desiccation tolerant) seeds. In: Reed BM (ed) Plant cryopreservation—a practical guide. Springer Science + Business Media, Berlin, pp 485–502

    Chapter  Google Scholar 

  • Rajasekharan PE, Ganeshan S (1994) Freeze preservation of rose pollen in liquid nitrogen: feasibility, viability and fertility status after long-term storage. J Hortic Sci 69:565–569

    Article  Google Scholar 

  • Richards CM, Volk GM, Reilley AA, Henk AD, Lockwood D, Reeves PA, Forsline PL (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genom 5:339–347

    Article  Google Scholar 

  • Roche P, Van Arkel G, Van Heusden AW (1997) A specific PCR assay based on an RFLP marker closely linked to the Sd1 gene for resistance to biotypes 1 and 2 of the rosy leaf curling aphid in apple. Plant Breed 116:567–572

    Article  CAS  Google Scholar 

  • Romadanova NV, Mishustina SA, Gritsenko DA, Omasheva MY, Galiakparov NN, Reed BM, Kushnarenko SV (2016) Cryotherapy as a method for reducing the virus infection of apples (Malus sp.). CryoLetters 37:1–6

    PubMed  Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation–vitrification and droplet-vitrification: a review. CryoLetters 28:151–172

    CAS  PubMed  Google Scholar 

  • Sakai A, Nishiyama Y (1978) Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. HortScience 13:223–227

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  PubMed  Google Scholar 

  • Seufferheld MJ, Stushnoff C, Forsline PL, Terrazas GH (1999) Cryopreservation of cold-tender apple germplasm. J Am Soc Hortic Sci 124:6

    Google Scholar 

  • Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology—a complete synthesis. Biotechn Adv 31:186–207

    Article  CAS  Google Scholar 

  • Stushnoff C (1987) Cryopreservation of apple genetic resources. Can J Plant Sci 67:1151–1154

    Article  Google Scholar 

  • Stushnoff C (2014) Cryophysiology of woody plant dormant buds. Acta Hortic 1039:63–72

    Article  Google Scholar 

  • Stushnoff C, Seufferheld M (1995) Cryopreservation of Apple (Malus species) genetic resources. In: Bajaj VPS (ed) Cryopreservation of plant germplasm I, biotechnology in agriculture and forestry. Springer, Berlin, pp 87–101

    Chapter  Google Scholar 

  • Stushnoff C, Vertucci CW, Towill LE (1988) Assessment of water status by differential scanning calorimetry for cryopreservation of dormant buds. In: Proc 17th N Am Thermal Analysis Soc Conf. Oct 9–12, Lake Buena Vista, FL. pp 246–251

  • Sun X, Wang P, Jia X, Huo L, Che R, Ma F (2017) Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnol J. https://doi.org/10.1111/pbi.12794

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomsen KA, Eriksen EN (2006) Effect of temperatures during seed development and pretreatment on seed dormancy of Malus sargentii and M. sieboldii. Seed Sci Technol 34:215–220

    Article  Google Scholar 

  • Towill LE, Bonnart R (2005) Cryopreservation of apple using non-desiccated sections from winter-collected scions. CryoLetters 26:323–332

    PubMed  Google Scholar 

  • Towill LE, Ellis D (2008) Cryopreservation of dormant buds. In: Reed BM (ed), Plant cryopreservation—a practical guide. Springer, Berlin, pp 421–442

    Chapter  Google Scholar 

  • Towill LE, Roos EE (1989) Techniques for preserving of plant germplasm. In: Knutson L, Stoner AK (eds) Biotic diversity and germplasm preservation, global imperatives. Kluwer Academic, Amsterdam, pp 379–403

    Chapter  Google Scholar 

  • Towill LE, Forsline PL, Walters C, Waddell JW, Laufmann J (2004) Cryopreservation of Malus germplasm using a winter vegetative bud method: results from 1915 accessions. CryoLetters 25:323–334

    PubMed  Google Scholar 

  • Turechek WW, Carroll JE, Rosenberger DA (2014) Powdery mildew of apple. NY State Integrated Pest Management. https://ecommons.cornell.edu/handle/1813/43120. Accessed 10 Jan 2018

  • Tyler N, Stushnoff C (1988a) Dehydration of dormant apple buds at different stages of cold acclimation to induce cryopreservability in different cultivars. Can J Plant Sci 68:1169–1176

    Article  Google Scholar 

  • Tyler NJ, Stushnoff C (1988b) The effects of prefreezing and controlled dehydration on cryopreservation of dormant vegetative apple buds. Can J Plant Sci 68:1163–1167

    Article  Google Scholar 

  • Tyler N, Stushnoff C, Gusta LV (1988) Freezing of water in dormant vegetative apple buds in relation to cryopreservation. Plant Physiol 87:201–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertucci CW, Stushnoff C (1992) The state of water in acclimating vegetative buds from Malus and Amelanchier and its relationship to winter hardiness. Physiol Plant 86:503–577

    Article  Google Scholar 

  • Vieira RL, Silva ALD, Zaffari GR, Steinmacher DA, Fraga HPDF., Guerra MP (2015) Efficient elimination of virus complex from garlic (Allium sativum L.) by cryotherapy of shoot tips. Acta Physiol Plant 37:1–11

    Article  Google Scholar 

  • Vogiatzi C, Grout BWW, Toldam-Andersen TB, Green J (2011a) Cryopreservation of dormant buds from temperate fruit crops to optimize working collection resources. Acta Hortic 908:477–482

    Article  Google Scholar 

  • Vogiatzi C, Grout BWW, Wetten A, Toldam-Andersen BT (2011b) Cryopreservation of winter-dormant apple buds: I—variation in recovery with cultivar and winter conditions. CryoLetters 32:358–366

    CAS  PubMed  Google Scholar 

  • Vogiatzi C, Grout BWW, Wetten A, Toldam-Andersen BT (2011c) Cryopreservation of winter-dormant apple buds: II—tissue water status after desiccation at − 4 °C and before further cooling. CryoLetters 32:367–376

    CAS  PubMed  Google Scholar 

  • Vogiatzi C, Grout BWW, Wetten A (2012) Cryopreservation of winter-dormant apple: III—bud water status and survival after cooling to − 30 °C and during recovery from cryopreservation. CryoLetters 33:160–168

    Google Scholar 

  • Volk GM (2011) Collecting pollen for genetic resources conservation. In: Guarino L, Ramanatha VR, Goldberg E (eds) Collecting plant genetic diversity: technical guidelines 2011 update. Bioversity International, Rome, pp 1–10

    Google Scholar 

  • Volk GM, Bramel P (2017) A strategy to conserve worldwide apple genetic resources: survey results. Acta Hortic 1172:99–105

    Article  Google Scholar 

  • Volk GM, Richards CM, Reilley AA, Henk AD, Forsline PL, Aldwinckle HS (2005) Ex situ conservation of vegetatively-propagated species: development of a seed-based core collection for Malus sieversii. J Am Soc Hortic Sci 130:203–210

    Google Scholar 

  • Volk GM, Richards CM, Forsline PL (2010) A comprehensive approach toward conserving Malus germplasm. Acta Hortic 859:177–182

    Article  Google Scholar 

  • Volk GM, Chao CT, Norelli J, Brown SK, Fazio G, Peace C, McFerson J, Zhong GY, Bretting P (2015) The vulnerability of US apple (Malus) genetic resources. Gene Res Crop Evol 62:765–794

    Article  Google Scholar 

  • Volk GM, Henk AD, Forsline PL, Szewc-McFadden AK, Fazio G, Aldwinckle H, Richards CM (2017a) Seeds capture the diversity of genetic resource collections of Malus sieversii maintained in an orchard. Gene Res Crop Evol 64:1513–1528

    Article  Google Scholar 

  • Volk GM, Henk AD, Jenderek M, Richards CM (2017b) Probabilistic viability calculations for cryopreserving vegetatively propagated collections in genebanks. Gene Res Crop Evol 64:1613–1622

    Article  CAS  Google Scholar 

  • Volk GM, Jenderek M, Chao CT (2017c) Prioritization of Malus accessions for collection cryopreservation at the USDA-ARS National Center for Genetic Resources Preservation. Acta Hortic 1172:267–272

    Article  Google Scholar 

  • Vollmer R, Villagaray R, Egusquiza V, Espirilla J, Garcia M, Torres A, Rojas E, Panta A, Barkley NA, Ellis D (2016) The potato cryobank at the International Potato Center (CIP): a model for long-term conservation of clonal plant genetic resources collections of the future. CryoLetters 37:318–329

    CAS  PubMed  Google Scholar 

  • Vollmer R, Villagaray R, Cárdenas J, Castro M, Chávez O, Anglin NL, Ellis D (2017) A large-scale viability assessment of the potato cryobank at the International Potato Center (CIP). In Vitro Cell Dev Biol Plant 53:309–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Walters C, Richards CM, Volk GM Challenges of storing seed of wild species. In: Greene S, Williams K, Khoury C, Kantar MB, Marek L (eds) Valuable plants of North America: crop wild relatives and wild utilized species. Springer, Berlin (in press)

  • Wang Q-C, Perl A (2006) Cryopreservation in floricultural crops. In: Teixeira da Silva, JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. Global Science Books, Ltd., UK, pp 523–539

    Google Scholar 

  • Wang Q-C, Valkonen JPT (2009) Cryotherapy of shoot tips: novel pathogen eradication method. Trend Plant Sci 14:119–122

    Article  CAS  Google Scholar 

  • Wang Q-C, Cuellar WJ, Rajamäki ML, Hiraka Y, Valkonen JPT (2008) Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Mol Plant Pathol 9:237–250

    Article  CAS  PubMed  Google Scholar 

  • Wang Q-C, Panis B, Engelmann F, Lambardi M, Valkonen JPT (2009) Cryotherapy of shoot tips: a technique for pathogen eradication to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Ann Appl Biol 154:351–363

    Article  Google Scholar 

  • Wang S, Liang D, Shi S, Ma F, Shu S, Wang R (2011a) Isolation and characterization of a novel drought responsive gene encoding a glycine-rich RNA-binding protein in Malus prunifolia (Willd.) Borkh. Plant Mol Biol Rep 29:125–134

    Article  CAS  Google Scholar 

  • Wang X, Wei J, Huang L, Kuang Z (2011b) Re-evaluation of pathogens causing Valsa canker on apple in China. Mycologia 103:317–324

    Article  PubMed  Google Scholar 

  • Wang B, Wang R-R, Cui Z-H, Li J-W, Bi W-L, Li B-Q, Ozudogru EA, Volk GM, Wang Q-C (2014a) Potential applications of cryogenic technologies to plant genetic transformation and pathogen eradication. Biotechnol Adv 32:583–595

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Li J-W, Zhang ZB, Wang R-R, Ma Y-L, Blystad D-R, Keller ERJ, Wang Q-C (2014b) Three vitrification-based cryopreservation procedures cause different cryo-injuries to potato shoot tips while all maintain genetic integrity in regenerants. J Biotechnol 32:583–595

    CAS  Google Scholar 

  • Wang N, Wolf J, Zhang FS (2016) Towards sustainable intensification of apple production in China—yield gaps and nutrient use efficiency in apple farming systems. J Integ Agric 15:716–725

    Article  Google Scholar 

  • Wang N, Guo T, Sun X, Jia X, Wang P, Shao Y, Liang D, Gong X, Ma F (2017) Functions of two Malus hupehensis (Pamp.) Rehd. YTPs (MhYTP1 and MhYTP2) in biotic- and abiotic-stress responses. Plant Sci 261:18–27

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Engelmann F, Zhao Y, Zhou M, Chen S (1999) Cryopreservation of apple shoot tips: importance of cryopreservation technique and of conditioning of donor plants. CryoLetters 20:121–130

    Google Scholar 

  • Wu Y, Zhao Y, Engelmann F, Zhou M, Zhang D, Chen S (2001) Cryopreservation of apple dormant buds and shoot tips. CryoLetters 22:375–380

    CAS  PubMed  Google Scholar 

  • Würdig J, Flachowsky H, Saß A, Peil A, Hanke M-V (2015) Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Mol Breed 35:95. https://doi.org/10.1007/s11032-015-0291-8

    Article  CAS  Google Scholar 

  • Xu J, Li B, Liu Q, Shi Y, Peng J, Jia M, Liu Y (2014) Wide-scale pollen banking of ornamental plants through cryopreservation. CryoLetters 35:312–319

    CAS  PubMed  Google Scholar 

  • Yang J, Xiu Y, Zhang Z (1995) Breeding of green delicious a tolerant to drought and cold resistant apple variety. Acta Hortic 403:78–80

    Google Scholar 

  • Yi JY, Lee GA, Chung JW, Lee YY, Kwak JG, Lee SY (2015) Morphological and genetic stability of dormant apple winter buds after cryopreservation. Kor J Plant Res 28:697–703

    Article  Google Scholar 

  • Yilmaz M (2008) Optimum germination temperature, dormancy, and viability of stored, non-dormant seeds of Malus trilobata (Poir.) C.K. Schneid. Seed Sci Technol 36:747–756

    Article  Google Scholar 

  • Yin Z-F, Zhao B, Bi W-L, Chen L, Wang Q-C (2013) Direct shoot regeneration from basal leaf segments of Lilium and assessment of genetic stability in regenerants by ISSR and AFLP markers. In Vitro Cell Dev Biol Plant 49:333–342

    Article  CAS  Google Scholar 

  • Yuan H, Zhao K, Lei H, Shen X, Liu Y, Liao X, Li T (2013) Genome-wide analysis of the GH3 family in apple (Malus × domestica). BMC Genom 14(1):297. https://doi.org/10.1186/1471-2164-14-297

    Article  CAS  Google Scholar 

  • Zhang JY, Qu SC, Qiao YS, Zhang Z, Guo ZR (2014) Overexpression of the Malus hupehensis MhNPR1 gene increased tolerance to salt and osmotic stress in transgenic tobacco. Mol Biol Rep 41:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Wu Y, Engelmann F, Zhou M, Chen S (1999a) Cryopreservation of apple in vitro shoot tips by the droplet freezing method. CryoLetters 20:109–112

    Google Scholar 

  • Zhao Y, Wu Y, Engelmann F, Zhou M, Zhang D, Chen S (1999b) Cryopreservation of apple shoot tips by encapsulation-dehydration: effect of preculture, dehydration and freezing procedures on shoot regeneration. CryoLetters 20:103–108

    Google Scholar 

  • Zhao T, Liang D, Wang P, Liu J, Ma F (2012) Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Mol Genet Genom 287:423–436

    Article  CAS  Google Scholar 

  • Zhao H, Han Q, Wang J, Gao X, Xiao CL, Liu J, Huang L (2013) Cytology of infection of apple leaves by Diplocarpon mali. Eur J Plant Pathol 136:41–49

    Article  Google Scholar 

  • Zhou ZQ (1999) The apple genetic resources in China: the wild species and their distributions, informative characteristics and utilization. Gene Res Crop Evol 46:599–609

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the use of published data from Monika Höfer, Julius Kühn Institute, Dresden, Germany. They also thank Jean Carlos Bettoni for providing an internal review of the manuscript. Financial support was received from the Department of Science and Technology of Shaanxi Province, China (2014KTCL02-05) (Q. Wang) and USDA Agricultural Research Service in-house appropriated funds Project Number 3012-21000-014-00D (G. Volk).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime A. Teixeira da Silva, Gayle M. Volk or Qiao-Chun Wang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest declared.

Additional information

Communicated by Neal Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MR., Chen, L., Teixeira da Silva, J.A. et al. Cryobiotechnology of apple (Malus spp.): development, progress and future prospects. Plant Cell Rep 37, 689–709 (2018). https://doi.org/10.1007/s00299-018-2249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-018-2249-x

Keywords

Navigation