Skip to main content
Log in

Genomics: applications to Antarctic ecosystems

  • Review
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Biological research in Antarctica has made considerable progress in science over recent decades. As little as 50 years ago, there was scant knowledge even of the species inhabiting the region. Since then, understanding has developed rapidly, across diverse disciplines including physiology, biochemistry, ecology and biogeography. Some dramatic global-scale discoveries and advances have been made, including the characterisation of antifreeze proteins from notothenioid fish and the finding that some fish lack a heat shock response, the identification of microbial communities living within the surface layers of rocks and description of the simplest faunal communities known, the identification that possibly the fastest environmental and ecological change on earth is occurring in Antarctic lakes, and that the biodiversity of the Southern Ocean is much greater than previously thought. Findings such as these have made biology in cold extreme environments one of the most stimulating areas for research in recent decades. Now, the advent and widespread applicability of the novel genomic technologies promise to move us into a period of equally, or possibly even more, rapid advance. At present, genomic information on Antarctic species is limited mainly to a number of fish species and microbes. However, an increasing number of Antarctic genomics projects are being funded and will significantly increase the amount of molecular information available on a much wider range of species in the near future. Hence it is timely to review progress so far in the use of genomic methods in Antarctic research and identify exciting prospects for dramatic future advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Intracellular vesicular traffic. Molecular biology of the cell, 4th edn. Garland, New York, pp 711–766

    Google Scholar 

  • Amann R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Andrássy I (1998) Nematodes in the sixth continent. J Nematode Syst Morphol 1:107–186

    Google Scholar 

  • Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MDS, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards JK, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Bailey D (2000) Muscle function characteristics in Antarctic and temperate scallops. PhD Thesis, University of St. Andrews

  • Barber DL, Mills Westermann JE, White MG (1981) The blood cells of the Antarctic icefish Chaenocephalus aceratus Lonnberg: light and electron microscopic observations. J Fish Biol 19:11–28

    Google Scholar 

  • Beja O, Koonin EV, Aravind L, Taylor LT, Seitz H, Stein JL, Bensen DC, Feldman RA, Swanson RV, DeLong EF (2002) Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces. Appl Environ Microbiol 68:335–345

    Article  PubMed  Google Scholar 

  • Booth MG, Hutchinson L, Brumsted M, Aas P, Coffin RB, Downer RC, Kelley CA, Lyons MM, Pakulski JD, Sandvik SLH, Jeffrey WH, Miller RV (2001) Quantification of recA gene expression as an indicator of repair potential in marine bacterioplankton communities of Antarctica. Aquat Microb Ecol 24:51–59

    Google Scholar 

  • Bowyer A (2003) Under Lake Vostok. New Sci 179(2412):29

    Google Scholar 

  • Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A 99:14250–14255

    Article  CAS  PubMed  Google Scholar 

  • Brêthes JC, Ferreyra G, De La Vega S (1994) Distribution growth and reproduction of the limpet Nacella (Patinigera) concinna (Strebel 1908) in relation to potential food availability, in Esperanza Bay (Antarctic Peninsula). Polar Biol 14:161–170

    Google Scholar 

  • Brockington S (2001a) Ecology and physiology of S. neumayeri at Adelaide Island, Antarctica. PhD Thesis, Open University

  • Brockington S (2001b) The seasonal energetics of the Antarctic bivalve Laternula elliptica (King and Broderip) at Rothera Point, Adelaide Island. Polar Biol 24:523–530

    Article  Google Scholar 

  • Brodeur JC, Calvo J, Clarke A, Johnston IA (2003) Myogenic cell cycle duration in Harpagifer species: evidence for cold compensation. J Exp Biol 206:1011–1016

    Article  PubMed  Google Scholar 

  • Brown K, Fraser KPP, Barnes DKA, Peck LS (2004) Links between the structure of an Antarctic shallow-water community and ice scour frequency. Oecologia 141:121–129

    Article  PubMed  Google Scholar 

  • Carpenter CM, Hofmann GE (2000) Expression of 70 kDa heat shock proteins in antarctic and New Zealand notothenioid fish. Comp Biochem Physiol 125A:229–238

    CAS  Google Scholar 

  • Carratù L, Gracey AY, Buono S, Maresca B (1998) Do Antarctic fish respond to heat shock? In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a biological overview. Springer, Berlin Heidelberg New York, pp 111–118

    Google Scholar 

  • Chapelle G, Peck LS (1999) Polar gigantism dictated by oxygen availability. Nature 399:114–115

    Article  CAS  Google Scholar 

  • Chen W-J, Bonillo C, Lecointre G (1998) Phylogeny of the Channichthyidae (Notothenioidei, Teleostei) based on two mitochondrial genes. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. Springer, Berlin Heidelberg New York, pp 287–298

    Google Scholar 

  • Cheng C-HC, Chen L (1999) Evolution of an antifreeze glycoprotein: a blood protein that keeps Antarctic fish from freezing arose from a digestive enzyme. Nature 401:443–444

    Article  CAS  PubMed  Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci U S A 94:3811–3816

    Article  CAS  PubMed  Google Scholar 

  • Cheng C-HC (1998) Origin and mechanism of evolution of antifreeze glycoproteins in polar fishes. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica: a biological overview. Springer, Berlin Heidelberg New York, pp 311–328

    Google Scholar 

  • Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM (2003) Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnol Oceanogr 48:1893–1902

    Google Scholar 

  • Clark MS, Roest Crollius H (2004) The pufferfish genomes: Takifugu and Tetraodon. Encyclopaedia of molecular cell biology and molecular medicine. Wiley (in press)

    Google Scholar 

  • Clark MS, Clarke A, Cockell CS, Convey P, Detrich HW III, Fraser KPP, Johnston IA, Methe B, Murray AE, Peck LS, Römisch K, Rogers AD (2004) Antarctic genomics. Comp Funct Genomics 5:230–238

    Article  CAS  Google Scholar 

  • Clarke A (1988) Seasonality in the Antarctic marine environment. Comp Biochem Physiol 90B:461–473

    Google Scholar 

  • Clarke A (1996) The influence of climate change on the distribution and evolution of organisms. In: Johnston IA, Bennett AF (eds) Animals and temperature: phenotypic and evolutionary adaptation. Cambridge University Press, Cambridge, pp 375–407

    Google Scholar 

  • Clarke A, Crame JA (1989) The origin of the Southern Ocean marine fauna. In: Crame JA (ed) Origins and evolution of the Antarctic biota. The Geological Society, London, pp 253–268

    Google Scholar 

  • Clarke A, Crame JA (1992) The Southern Ocean benthic fauna and climate change: a historical perspective. Philos Trans R Soc B Biol Sci 338:299–309

    Google Scholar 

  • Clarke A, Johnston IA (1996) Evolution and adaptive radiation of Antarctic fishes. Trends Ecol Evol 11:212–218

    Google Scholar 

  • Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905

    Article  Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Annu Rev 41:47–114

    Google Scholar 

  • Clarke A, Leakey RJG (1996) The seasonal cycle of phytoplankton, macronutrients and the microbial community in a nearshore Antarctic marine ecosystem. Limnol Oceanogr 41:1281–1294

    Google Scholar 

  • Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich HW III (1995) Genomic remnants of α-globin genes in the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci U S A 92:1817–1821

    CAS  PubMed  Google Scholar 

  • Cohen FE, Prusiner SB (1998) Pathological conformations of prion proteins. Annu Rev Biochem 67:793–819

    Article  CAS  PubMed  Google Scholar 

  • Convey P (1996) Overwintering strategies of terrestrial invertebrates in Antarctica: the significance of flexibility in extremely seasonal environments. Eur J Entomol 93:489–505

    Google Scholar 

  • Convey P (2001a) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1. Academic, San Diego, pp 171–184

  • Convey P (2001b) Terrestrial ecosystem responses to climate changes in the Antarctic. In: Walther GR (ed) “Fingerprints” of climate change. Kluwer, New York, pp 17–42

    Google Scholar 

  • Convey P (2003) Maritime Antarctic climate change: signals from terrestrial biology. In: Domack E, Burnett A, Leventer A et al. (eds) Antarctic peninsula climate variability: a historical and palaeoenvironmental perspective. Pub Am Geophys Union Antarct Res Ser 79:45–158

    Google Scholar 

  • Convey P, Block W, Peat HJ (2003) Soil arthropods as indicators of water stress in Antarctic terrestrial habitats. Global Change Biol 9:1–13

    Article  Google Scholar 

  • Croxall JP, Trathan PN, Murphy EJ (2002) Environmental change and Antarctic seabird populations. Science 297:1510–1514

    Article  CAS  PubMed  Google Scholar 

  • de la Torre JR, Christianson LM, Beja O, Suzuki MT, Karl DM, Heidelberg J, DeLong EF (2003) Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc Natl Acad Sci U S A 100:12830–12835

    Article  PubMed  Google Scholar 

  • di Prisco G, Cocca E, Parker S, Detrich HWIII (2002) Tracking the evolutionary loss of hemoglobin expression by the white blooded Antarctic icefishes. Gene 295:185–191

    Article  PubMed  Google Scholar 

  • Davey MC (1989) The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol 10:29–36

    Article  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  CAS  PubMed  Google Scholar 

  • Deming JW (2003) Psychrophiles and polar regions. Biofutur 229:43–50

    Google Scholar 

  • Detrich HW III (1998) Molecular adaptation of microtubules and microtubule motors from Antarctic fish. In: de Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica. Springer, Berlin Heidelberg New York, pp 139–149

    Google Scholar 

  • Detrich HW III, Fitzgerald TJ, Dinsmore JH, Marchese-Ragona SP (1992) Brain and egg tubulins from Antarctic fishes are functionally and structurally distinct. J Biol Chem 267:18766–18775

    CAS  PubMed  Google Scholar 

  • Detrich HW III, Johnson KA, Marchese-Ragona SP (1989) Polymerization of Antarctic fish tubulins at low temperatures: energetic aspects. Biochemistry 28:10085–10093

    CAS  PubMed  Google Scholar 

  • Dillon JG, Tatsumi CM, Tandingan PG, Castenholz RW (2002) Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium. Arch Microbiol 177:322–331

    Article  CAS  PubMed  Google Scholar 

  • Eastman JT (2000) Antarctic notothenioid fishes as subjects for research in evolutionary biology. Antarct Sci 12:276–287

    Google Scholar 

  • Eastman JT, McCune AR (2000) Fishes on the Antarctic continental shelf: evolution of a marine species flock. J Fish Biol 57A:84–102

    Article  Google Scholar 

  • Edman CF, Mehta P, Press R, Spargo CA, Walker GT, Nerenberg M (2000) Pathogen analysis and genetic predisposition testing using microelectronic arrays and isothermal amplification. J Invest Med 48:93–101

    CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes—hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Fields PA, Somero GN (1997) Amino acid sequence differences cannot fully explain interspecific variation in thermal sensitivities of gobiid fish A4-lactate dehydrogenases (A4-LDHS). J Exp Biol 200:1839–1850

    CAS  Google Scholar 

  • Fields PA, Somero GN (1998) Hot spots in cold adaptation: localised increases in conformational flexibility in lactate dehydrogenase A4 orthogs of Antarctic notothenioid fishes. Proc Natl Acad Sci U S A 95:11476–11481

    Article  CAS  PubMed  Google Scholar 

  • Fields PA, Kim Y-S, Carpenter JF, Somero GN (2002) Temperature adaptation in Gillichthys (Teleost: Gobiidae) A4-lactate dehydrogenases: identical primary structures produce subtly different conformations. J Exp Biol 205:1293–1303

    CAS  Google Scholar 

  • Floyd R, Abebe E, Papert A, Blaxter ML (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850

    Article  CAS  PubMed  Google Scholar 

  • Fontanna A (1991) How nature engineers protein (thermo) stability. In: di Prisco G (ed) Life under extreme conditions. Springer, Berlin Heidelberg New York, pp 89–133

    Google Scholar 

  • Fowbert JA, Smith RIL (1994) Rapid population increases in native vascular plants in the Argentine Islands, Antarctic Peninsula. Arct Alp Res 26:290–296

    Google Scholar 

  • Fraser KPP, Clarke A, Peck LS (2002) Feast and famine in Antarctica: seasonal physiology in the limpet Nacella concinna. Mar Ecol Prog Ser 242:169–177

    Google Scholar 

  • Fraser KPP, Peck LS, Clarke A Protein synthesis, RNA concentrations, nitrogen excretion and metabolism vary seasonally in the Antarctic holothurian Heterocucumis steineni (Ludwig 1898). Physiol Biochem Zool (in press)

  • Freckman DW, Virginia RA (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78:363–369

    Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053

    Google Scholar 

  • George A (2004) Lifeless lake or exotic ecosystem. New Sci 183(2459):6–7

    PubMed  Google Scholar 

  • Gilbert NS (1991) Microphytobenthic seasonality in near-shore marine sediments at Signy Island, South Orkney Islands, Antarctica. Estuarine Coast Shelf Sci 33:89–104

    Google Scholar 

  • Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277

    Article  CAS  PubMed  Google Scholar 

  • Goodchild A, Saunders NFW, Ertan H, Raftery M, Guilhaus M, Curmi PMG, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321

    CAS  PubMed  Google Scholar 

  • Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci U S A 98:1993–1998

    Article  CAS  PubMed  Google Scholar 

  • Grange L, Tyler PA, Peck LS, Cornelius N (2004) Long-term interannual cycles of the gametogenic ecology of the Antarctic britle star Ophionotus victoriae. Mar Ecol Prog Ser 278:141–155

    Google Scholar 

  • Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022

    Article  Google Scholar 

  • Hardewig I, van Dijk PLM, Moyes CD, Portner HO (1999) Temperature-dependant expression of cytochrome-c oxidase in Antarctic and temperate fish. Am J Physiol Regul Integr Comp Physiol 46:R508–R516

    Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2002) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase sununit 1 divergences among closely related species. Proc R Soc Lond B [suppl]:S1–S4

    Google Scholar 

  • Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the Antarctic fish Trematomus bernacchii (Family Nototheniidae). J Exp Biol 203:2331–2339

    CAS  PubMed  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565

    Article  PubMed  Google Scholar 

  • Hureau JC, Petit D, Fine JM, Marneax (1977) New cytological, biochemical and physiological data on the colorless blood of the Channichthyidae (Pisces, Teleosteans, Perciformes). In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Washington DC, pp 459–477

    Google Scholar 

  • Hunt BM, Hoefling K, Cheng CHC (2003) Annual warming episodes in seawater temperatures in McMurdo Sound in relationship to endogenous ice in notothenioid fish. Antarct Sci 15:333–338

    Article  Google Scholar 

  • Huston AL, Krieger-Brockett BB, Deeming JW (2000) Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ Microbiol 2:383–388

    Article  CAS  PubMed  Google Scholar 

  • Jackson AE, Seppelt RD (1997) Physiological adaptations to freezing and UV radiation exposure in Prasiola crispa, an Antarctic terrestrial alga. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure, and survival. University of Cambridge, Cambridge

    Google Scholar 

  • Johnson AE, van Waes MA (1999) The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol 15:799–842

    Article  PubMed  Google Scholar 

  • Johnston IA (2001) Implications of muscle growth patterns for the colour and texture of fish flesh. In: Kestin SC, Warriss PD (eds) Farmed fish quality. Blackwell, Oxford, pp 13–30

    Google Scholar 

  • Johnston IA (2003) Muscle metabolism and growth in Antarctic fishes (sub-order Notothenioidei): evolution in a cold environment. Comp Biochem Physiol B 136:701–713

    Article  PubMed  Google Scholar 

  • Johnston IA, Calvo J, Guderley H, Fernandez D, Palmer L (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in Perciform fishes. J Exp Biol 210:1–12

    Google Scholar 

  • Johnston IA, Fernández DA, Calvo J, Vieira VLA, North AW, Abercromby M, Garland T (2003) Reduction in muscle fibre number during the adaptive radiation of notothenioid fishes: a phylogenetic perspective. J Exp Biol 206:2595–2609

    Article  Google Scholar 

  • King JC, Harangozo SA (1998) Climate change in the western Antarctic Peninsula since 1945: observations and possible causes. Ann Glaciol 27:571–575

    Google Scholar 

  • Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci U S A 97:1400–1405

    Article  CAS  PubMed  Google Scholar 

  • Klinkhammer GP, Chin CS, Keller RA, Dahlman A, Sahling H, Sarthou G, Petersen S, Smith F (2001) Discovery of new hydrothermal vent sites in Bransfield Strait, Antarctica. Earth Planet Sci Lett 193:395–407

    Article  CAS  Google Scholar 

  • Lawver LA, Gahagan LM, Coffin MF (1992) The development of palaeoseaways around Antarctica. Antarct Res Ser 56:7–30

    Google Scholar 

  • Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeoclim Palaeoecol 198:11–37

    Article  Google Scholar 

  • Lear CH, Elderfield H, Wilson PH (2000) Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287:269–272

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the Hypocretin (Orexin) receptor 2 gene. Cell 98:365–376

    Article  CAS  PubMed  Google Scholar 

  • Littlepage JL (1965) Oceanographic investigations in McMurdo Sound, Antarctic. In: Llano GA (ed) Biology of the Antarctic seas II. Antarctic research series 5. American Geophysical Union, Washington DC, pp 1–37

    Google Scholar 

  • Lohan D, Johnston S (2003) The International Regime for Bioprospecting; Existing Policies and Emerging Issues for Antarctica. UN University Institute of Advanced Studies (UNU/IAS) Report. UNU/IAS, Tokyo

  • Madronich S, Flocke S (1997) Theoretical estimation of biologically effective UV radiation at the earth’s surface. In: Zerefos C, Bais A (eds) NATO ASI Series, vol I 52. Solar ultraviolet radiation, modelling, measurements and effects. Springer, Berlin Heidelberg New York, pp 23–48

  • Marshall DJ, Pugh PJA (1996) Origin of the inland Acari of Continental Antarctica, with particular reference to Dronning Maud Land. Zool J Linn Soc 118:101–118

    Article  Google Scholar 

  • Methe B, Lewis M, Weaver B, Weidman J, Nelson W, Huston A, Deming J, Fraser C (2002) The Colwellia strain 34H genome sequencing project. In: Abstract 142 of the DOE ninth genome sequencing contractor-grantee workshop, Washington DC, 27–31 January 2002

  • Moylan TJ, Sidell BD (2000) Concentrations of myoglobin and myoglobin mRNA in heart ventricles from Antarctic fishes. J Exp Biol 203:1277–1286

    CAS  Google Scholar 

  • Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, DeLong EF (1998) Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters off Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595

    CAS  PubMed  Google Scholar 

  • Murray AE, Wu KY, Moyer CL, Karl DM, DeLong EF (1999) Evidence for circumpolar distribution of planktonic Archaea in the Southern Ocean. Aquat Microb Ecol 18:263–273

    Google Scholar 

  • Near TJ, Pesavento JJ, Cheng CH (2003) Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic icefishes (Notothenioidei: Channichthyidae). Mol Phylogenet Evol 28:87–98

    Article  CAS  PubMed  Google Scholar 

  • Newsham KK (2003) UV-B radiation arising from stratospheric ozone depletion influences the pigmentation of the Antarctic moss Andreaea regularis. Oecologia 135:327–331

    CAS  PubMed  Google Scholar 

  • Newsham KK, Hodgson DA, Murray AWA, Peat HJ, Lewis Smith RI (2002) Response of two Antarctic bryophytes to stratospheric ozone depletion. Global Change Biol 8:972–983

    Article  Google Scholar 

  • Nierman WC, Fraser CM (2004) The power in comparisons. Trends Microbiol 12:62–63

    Article  CAS  Google Scholar 

  • NRC (2003) Frontiers in polar biology in the genomic era. National Academy Press, Washington DC. (http://www.nap.edu/catalog/10623.html)

    Google Scholar 

  • O’Cofaigh C, Pudsey CJ, Dowdeswell JA, Morris P (2002) Evolution of subglacial bedforms along a paleo-ice stream, Antarctic Peninsula continental shelf. Geophys Res Lett 29:1199

    Google Scholar 

  • Page T, Linse K (2002) More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol 25:818–826

    Google Scholar 

  • Pearce DA (2003) Bacterioplankton community structure in a maritime Antarctic oligotrophic lake during a period of holomixis, as determined by denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridisation (FISH). Microbiol Ecol 46:92–105

    Article  CAS  Google Scholar 

  • Peck LS (1989) Temperature and basal metabolism in two Antarctic marine herbivores. J Exp Mar Biol Ecol 127:1–12

    Article  Google Scholar 

  • Peck LS (2002a) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40

    Article  Google Scholar 

  • Peck LS (2002b) Coping with change: stenothermy, physiological flexibility and environmental change in Antarctic seas. Proceedings of the 14th international congress on comparative physiology. http://www.liv.ac.uk/ciliate/climate/peck.html

  • Peck LS, Brockington S, VanHove S, Beghyn M (1999) Community recovery following catastrophic iceberg impacts in Antarctica. Mar Ecol Prog Ser 186:1–8

    Google Scholar 

  • Peck LS, Conway LZ (2000) The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the bivalvia, Spec Publ vol 177. Geological Society, London, pp 441–445

  • Peck LS, Pörtner HO, Hardewig I (2002) Metabolic demand, oxygen supply, and critical temperatures in the Antarctic bivalve Laternula elliptica. Physiol Biochem Zool 75:123–133

    Article  PubMed  Google Scholar 

  • Peck LS, Webb KE, Bailey D (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630

    Article  Google Scholar 

  • Place SP, Zippay ML, Hofmann GE (2004) Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes. Am J Physiol Regul Integr Comp Physiol 287:R429–R436

    CAS  PubMed  Google Scholar 

  • Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systematic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A 132:739–761

    Google Scholar 

  • Pörtner HO, Peck LS, Zielinski S, Conway LZ (1999) Intracellular pH and energy metabolism in the highly stenothermal Antarctic bivalve Limopsis marionensis as a function of ambient temperature. Polar Biol 22:17–30

    Article  Google Scholar 

  • Podrabsky JE, Somero GN (2004) Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J Exp Biol 207:2237–2254

    Article  CAS  PubMed  Google Scholar 

  • Quayle WC, Peck LS, Peat H, Ellis-Evans CJ, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645

    Article  CAS  PubMed  Google Scholar 

  • Quayle WC, Convey P, Peck LS, Ellis-Evans CJ, Butler HG, Peat HJ (2003) Ecological responses of maritime Antarctic lakes to regional climate change. In: Domack E, Burnett A, Leventer A et al. (eds) Antarctic Peninsula climate variability: a historical and palaeoenvironmental perspective. American Geophysical Union. Antarctic Res Ser 79

  • Richie PA, Bargelloni L, Meyer A, Taylor JA, MacDonald JA, Lambert DM (1996) Mitochondrial phylogeny of trematomid fishes (Nototheniidae, Perciformes) and the evolution of Antarctic fish. Mol Phylogenet Evol 5:383–390

    Article  PubMed  Google Scholar 

  • Roberston R, Visbeck M, Gordon AL, Fahrback E (2002) Long term temperature trends in the deep waters of the Weddell sea. Deep Sea Res 49:4791–4806

    Google Scholar 

  • Römisch K, Collie N, Soto N, Logue J, Lindsay M, Scheper W, Cheng C-H C (2003) Protein translocation across the endoplasmic reticulum membrane in cold-adapted organisms. J Cell Sci 116:2875–2883

    Article  PubMed  Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850

    CAS  PubMed  Google Scholar 

  • Saunders NFW, Thomas T, Curmi PMG, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K, Feldman R, Gates C, Bench S, Sowers K, Kadner K, Aerts A, Dehal P, Detter C, Glavina T, Lucas S, Richardson P, Larimer F, Hauser L, Land M, Cavicchioli R (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Moskal W, De Mora SJ, HowardWilliams C, Vincent WF (1991) Limnological properties of Antarctic ponds during freezing. Antarct Sci 3:379–388

    Google Scholar 

  • Small DJ, Moylan T, Vayda ME, Sidell BD (2003) The myoglobin gene of the Antarctic icefish, Chaenocephalus aceratus, contains a duplicated TATAAAA sequence that interferes with transcription. J Exp Biol 206:131–139

    Article  CAS  PubMed  Google Scholar 

  • Smith RIL (1990) Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In: Kerry KR, Hempel G (eds) Antarctic ecosystems-ecological change and conservation. Springer, Berlin Heidelberg New York, pp 32–50

    Google Scholar 

  • Somero GN (2003) Protein adaptations to temperature and pressure: complementary roles of adaptive changes in amino acid sequence and internal milieu. Comp Biochem Physiol B 136:577–591

    Article  PubMed  Google Scholar 

  • Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica. Mol Ecol 12:2357–2369

    Article  CAS  Google Scholar 

  • Stix G (2004) Patents on ice: Antarctica as a last frontier for bioprospectors—and their intellectual property. Sci Am 26

    Google Scholar 

  • Van de Sluis B, Kole S, van Wolferen M, Holmes NG, Pearson NG, Pearson PL, Rothuizen J, van Oost BA, Wijmenga C (2000) Refined genetic and comparative physical mapping of the canine copper toxicosis locus. Mamm Genome 11:455–460

    Article  PubMed  Google Scholar 

  • Vanneste LE, Larter RD (2002) Sediment subduction, subduction erosion and strain regime in the northern South Sandwich forearc. J Geophys Res Solid Earth 107(B7):2149

    Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, King JC, Mulvaney R (2001) Devil in the detail. Science 293:1777–1779

    Article  CAS  PubMed  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  CAS  PubMed  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin JM, Hoegh-Gulberg O, Bairlein F (2002) Ecological reponses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, Ganem D, DeRisi JL (2002) Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A 99(24):15687–15692

    Article  CAS  PubMed  Google Scholar 

  • Watson E (2003) Lake Vostok is like a giant can of soda. New Sci 179(2409):21

    PubMed  Google Scholar 

  • Worland MR, Convey P (2001) Rapid cold hardening in Antarctic microarthropods. Funct Ecol 15:515–524

    Article  Google Scholar 

  • Young JS (2004) Effects of temperature on elements of the motor control of behaviour in eurythermal and stenothermal crustaceans. PhD Thesis, University of Cambridge

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by US National Science Foundation grant OPP-0089451 (to H.W.D.). I.A.J. supported by NERC grant GR3/12550. K.R. supported by Wellcome Trust grant no. 042216. This paper was produced by BAS staff within the LATEST and ABPPF core programmes. An abbreviated version of this text was published in Comparative and Functional Genomics (Clark et al. 2004) copyright Wiley, reproduced with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melody S. Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peck, L.S., Clark, M.S., Clarke, A. et al. Genomics: applications to Antarctic ecosystems. Polar Biol 28, 351–365 (2005). https://doi.org/10.1007/s00300-004-0671-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-004-0671-8

Keywords

Navigation