Skip to main content

Advertisement

Log in

Birds, nutrients, and climate change: mtDNA haplotype diversity of Arctic Daphnia on Svalbard revisited

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Ecosystems in the high Arctic are in transition due to climate change and species shifts. On the Svalbard archipelago, the average annual temperature has increased by more than 2 °C over the past 30 years, and there has been a striking increase in breeding populations of geese. Birds serve as a dominant source of nutrients (via faeces) and may also serve as vectors of dispersal of many small aquatic organisms. We compared samples of species and haplotype composition of the dominant freshwater crustacean Daphnia spp., from 1992, and those resampled in 2014 to see if these major impacts on Arctic freshwater ecosystems may also have affected this key grazer over the past three decades. The study covers tundra ponds that vary in levels of nutrients, abundance, and diversity of birds. Comparison of genetic mitochondrial DNA sequences revealed little change in haplotype and nucleotide diversity between 1992 and 2014, but higher species and haplotype diversity were found in nutrient-rich ponds that hosted large migratory bird populations. This could either reflect that high nutrient levels allow for the maintenance of higher levels of genetic diversity (i.e. haplotypes, lineages), that birds serve as vectors for the dispersal of clones, or likely a combination of both mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamowicz SJ, Petrusek A, Colbourne JK, Hebert PDN, Witt JDS (2009) The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus. Mol Phylogenet Evol 50:423–436

    Article  PubMed  Google Scholar 

  • Alerstam T, Gudmundsson GA (1999) Migration patterns of tundra birds: tracking radar observations along the Northeast Passage. Arctic 52:346–371

    Article  Google Scholar 

  • Allen MR, Thum RA, Cáceres CE (2010) Does local adaptation to resources explain genetic differentiation among Daphnia populations? Mol Ecol 19:3076–3087

    Article  PubMed  Google Scholar 

  • Altermatt F, Pajunen VI, Ebert D (2008) Climate change affects colonization dynamics in a metacommunity of three Daphnia species. Glob Change Biol 14:1209–1220

    Article  Google Scholar 

  • Boavida MJ, Heath RT (1984) Are the phosphatases released by Daphnia magna components of its food? Limnol Oceanogr 29:641–645

    Article  CAS  Google Scholar 

  • Carlson RE, Simpson J (1996) A coordinator’s guide to volunteer lake monitoring methods. North American Lake Management Society, Madison

    Google Scholar 

  • Colbourne JK, Hebert PD (1996) The systematics of North American Daphnia (Crustacea: Anomopoda): a molecular phylogenetic approach. Philos Trans R Soc Lond B Biol Sci 351:349–360

    Article  CAS  PubMed  Google Scholar 

  • Colbourne JK, Crease TJ, Weider LJ, Hebert PD, Duferesne F, Hobaek A (1998) Phylogenetics and evolution of a circumarctic species complex (Cladocera: Daphnia pulex). Biol J Linn Soc 65:347–365

    Google Scholar 

  • Crease TJ, Omilian AR, Costanzo KS, Taylor DJ (2012) Transcontinental phylogeography of the Daphnia pulex species complex. PLoS ONE 7:e46620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufresne F, Hebert PDN (1997) Pleistocene glaciations and polyphyletic origins of polyploidy in an arctic cladoceran. Proc R Soc Lond B Biol Sci 264:201–206

    Article  Google Scholar 

  • Dufresne F, Marková S, Vergilino R, Ventura M, Kotlík P (2011) Diversity in the reproductive modes of European Daphnia pulicaria deviates from the geographical parthenogenesis. PLoS ONE 6:e20049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Figuerola J, Green AJ, Michot TC (2005) Invertebrate eggs can fly: evidence of waterfowl-mediated gene flow in aquatic invertebrates. Am Nat 165:274–280

    Article  PubMed  Google Scholar 

  • Fox AD, Ebbinge BS, Mitchell C, Heinicke T, Aarvak T, Colhoun K, Clausen P, Dereliev S, Faragó S, Koffijberg K, Kruckenberg H (2010) Current estimates of goose population sizes in western Europe, a gap analysis and an assessment of trends. Ornis Svecica 20:115–127

    Google Scholar 

  • Frisch D, Green AJ, Figuerola J (2007) High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquat Sci 69:568–574

    Article  Google Scholar 

  • Hebert P (1978) The population biology of Daphnia (Crustacea, Daphnidae). Biol Rev 53:387–426

    Article  Google Scholar 

  • Hebert P, Emery C (1990) The adaptive significance of cuticular pigmentation in Daphnia. Funct Ecol 4:703–710

    Article  Google Scholar 

  • Hebert PDN, Hann BJ (1986) Patterns in the composition of arctic tundra pond microcrustacean communities. Can J Fish Aquat Sci 43:1416–1425

    Article  Google Scholar 

  • Hessen DO, Faafeng BA, Smith VH, Bakkestuen V, Walseng B (2006) Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology 87:433–443

    Article  PubMed  Google Scholar 

  • Hessen DO, Bakkestuen V, Walseng B (2007) Energy input and zooplankton species richness. Ecography 30:749–758

    Article  Google Scholar 

  • Holm TM, Koinig KA, Andersen T, Donali E, Hormes A, Klaveness D, Psenner R (2012) Rapid physicochemical changes in the high Arctic Lake Kongressvatn caused by recent climate change. Aquat Sci 74:385–395

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 17:754–755

    Article  CAS  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: The physical basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK and New York, NY, USA

  • Latta LC, Bakelar JW, Knapp RA, Pfrender ME (2007) Rapid evolution in response to introduced predators II: the contribution of adaptive plasticity. BMC Evol Biol 7:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Madsen J, Cracknell G, Fox AD (1999) Goose populations of the Western Palearctic. A review of status and distribution. Wetlands International Publication No. 48. Wetlands International, Wageningen, The Netherlands. National Environmental Research Institute, Rønde, Denmark

  • Marková S, Dufresne F, Rees DJ, Cerný M, Kotlík P (2007) Cryptic intercontinental colonization in water fleas Daphnia pulicaria inferred from phylogenetic analysis of mitochondrial DNA variation. Mol Phylogenet Evol 44:42–52

    Article  PubMed  Google Scholar 

  • Marková S, Dufresne F, Manca M, Kotlík P (2013) Mitochondrial capture misleads about ecological speciation in the Daphnia pulex complex. PLoS ONE 8:e69497

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarthy SDS, Rafferty SP, Frost PC (2010) Responses of alkaline phosphatase activity to phosphorus stress in Daphnia magna. J Exp Biol 213:256–261

    Article  CAS  PubMed  Google Scholar 

  • Mergeay J, Aguilera X, Declerck S, Petrusek A, Huyse T, De Meester L (2008) The genetic legacy of polyploid Bolivian Daphnia: the tropical Andes as a source for the North and South American D. pulicaria complex. Mol Ecol 17:1789–1800

    Article  CAS  PubMed  Google Scholar 

  • Miner BE, Kerr B (2011) Adaptation to local ultraviolet radiation conditions among neighbouring Daphnia populations. Proc Biol Sci/R Soc 278:1306–1313

    Article  Google Scholar 

  • Miner BE, Knapp RA, Colbourne JK, Pfrender ME (2013) Evolutionary history of alpine and subalpine Daphnia in western North America. Freshw Biol 58:1512–1522

    Article  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, 2

  • Olson MH, Hage MM, Binkley MD, Binder JR (2005) Impact of migratory snow geese on nitrogen and phosphorus dynamics in a freshwater reservoir. Freshw Biol 50:882–890

    Article  CAS  Google Scholar 

  • Pedersen A, Speed JDM, Tombre IM (2013) Prevalence of pink-footed goose grubbing in the arctic tundra increases with population expansion. Polar Biol 36:1569–1575

    Article  Google Scholar 

  • Prop J, Black JM, Shimmings P, Owen M (1998) The spring range of barnacle geese Branta leucopsis in relation to changes in land management and climate. Biol Conserv 86:339–346

    Article  Google Scholar 

  • Prop J, Aars J, Bårdsen BJ, Hanssen SA, Bech C, Bourgeon S, de Fouw J, Gabrielsen GW, Lang J, Noreen E, Oudman T (2015) Climate change and the increasing impact of polar bears on bird populations. Front Ecol Evol 3:1–12

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sarnelle O, Wilson AE (2005) Local adaptation of Daphnia pulicaria to toxic cyanobacteria. Limnol Oceanogr 50:1565–1570

    Article  Google Scholar 

  • Scoville AG, Pfrender ME (2010) Phenotypic plasticity facilitates recurrent rapid adaptation to introduced predators. Proc Natl Acad Sci USA 107:4260–4263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tollrian R, Heibl C (2004) Phenotypic plasticity in pigmentation in Daphnia induced by UV radiation and fish kairomones. Funct Ecol 18:497–502

    Article  Google Scholar 

  • Van Eerden MR, Drent RH, Stahl J, Bakker JP (2005) Connecting seas: Western Palaearctic continental flyway for water birds in the perspective of changing land use and climate. Glob Change Biol 11:894–908

    Article  Google Scholar 

  • Van Geest GJ, Hessen DO, Spierenburg P, Dahl-Hansen GA, Christensen G, Faerovig PJ, Brehm M, Loonen MJ, Van Donk E (2007) Goose-mediated nutrient enrichment and planktonic grazer control in arctic freshwater ponds. Oecologia 153:653–662

    Article  PubMed  Google Scholar 

  • Vergilino R, Belzile C, Dufresne F (2009) Genome size evolution and polyploidy in the Daphnia pulex complex (Cladocera: Daphniidae). Biol J Linn Soc 97:68–79

    Article  Google Scholar 

  • Vergilino R, Markova S, Ventura M, Manca M, Dufresne F (2011) Reticulate evolution of the Daphnia pulex complex as revealed by nuclear markers. Mol Ecol 20:1191–1207

    Article  CAS  PubMed  Google Scholar 

  • Ward RD, Bickerton MA, Finston T, Hebert PDN (1994) Geographical cline in breeding systems and ploidy levels in European populations of Daphnia pulex. Heredity 73:532–543

    Article  Google Scholar 

  • Weider L, Hobaek A (1994) Molecular biogeography of clonal lineages in a high-Arctic apomictic Daphnia complex. Mol Ecol 3:497–506

    Article  CAS  PubMed  Google Scholar 

  • Weider LJ, Beaton MJ, Hebert PDN (1987) Clonal diversity in High-Arctic populations of Daphnia pulex, a polyploid apomictic complex. Evolution 41:1335–1346

    Article  Google Scholar 

  • Weider LJ, Hobaek A, Colbourne JK, Crease TJ, Dufresne F, Hebert PD (1999a) Holarctic phylogeography of an asexual species complex I. Mitochondrial DNA variation in Arctic Daphnia. Evolution 53:777–792

    Article  Google Scholar 

  • Weider LLJ, Hobæk A, Hebert PDN, Crease TJ, Hobaek A (1999b) Holarctic phylogeography of an asexual species complex—II. Allozymic variation and clonal structure in Arctic Daphnia. Mol Ecol 8:1–13

    Article  Google Scholar 

  • Weider LJ, Jeyasingh PD, Looper KG (2008) Stoichiometric differences in food quality: impacts on genetic diversity and the coexistence of aquatic herbivores in a Daphnia hybrid complex. Oecologia 158:47–55

    Article  PubMed  Google Scholar 

  • Weider LJ, Frisch D, Hebert PDN (2010) Long-term changes in metapopulation genetic structure: a quarter-century retrospective study on low-Arctic rock pool Daphnia. Proc Biol Sci/R Soc 277:139–146

    Article  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Weir B, Cockerham CC (1984) Estimating F-Statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson CC, Hebert PDN (1992) The maintenance of taxon diversity in an asexual assemblage: an experimental analysis. Ecology 73:1462–1472

    Article  Google Scholar 

  • Xu L, Myneni RB, Chapin FS III, Callaghan TV, Pinzon JE, Tucker CJ, Zhu Z, Bi J, Ciais P, Tømmervik H, Euskirchen ES (2013) Temperature and vegetation seasonality diminishment over northern lands. Nat Clim Change 3:581–586

    Google Scholar 

Download references

Acknowledgements

The collection of samples on Svalbard in 2014 was done during an expedition funded by the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009–2014 in the frame of Project Contract No. Pol-Nor/201992/93/2014. The authors also acknowledge the funding sources (see Weider and Hobæk 1994) that allowed for the 1992 sample collection expedition. We thank three anonymous reviewers for their constructive comments on earlier versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Alfsnes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

List of primers and PCR cycling conditions (DOCX 15 kb)

Online Resource 2

List of previously published Daphnia pulex species complex sequences included in the phylogeny (DOCX 17 kb)

Online Resource 3

Bayesian phylogeny as shown in Fig. 2 showing all (uncollapsed) clades and every pond. Taxa indicated with Regions, followed by ponds (# - see Table 3), number of sequences (italics) and sample year (PDF 115 kb)

Online Resource 4

Lineages by regions and the respective population genetic parameters (DOCX 17 kb)

Online Resource 5

Distribution of haplotypes (DOCX 17 kb)

Online Resource 6

Haplotype and lineage comparison of individual ponds sampled in 1992 and 2014 (DOCX 17 kb)

Online Resource 7

Linear correlation between nutrient content (μg P/L) and; haplotype (Hd) and nucleotide (π) diversity for the 2014 dataset. (PDF 106 kb)

Online Resource 8

Rarefaction curves (using R and specaccum{vegan}, 100 permutations, first order jack-knife) showing the expected discovery of haplotypes for ponds at Måkeøyane and Reinsdyrflya from 1992 and 2014. Bars are 95 % confidence intervals (PDF 105 kb)

Online Resource 9

AMOVA for the 1992 and 2014 datasets (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfsnes, K., Hobæk, A., Weider, L.J. et al. Birds, nutrients, and climate change: mtDNA haplotype diversity of Arctic Daphnia on Svalbard revisited. Polar Biol 39, 1425–1437 (2016). https://doi.org/10.1007/s00300-015-1868-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1868-8

Keywords

Navigation