Skip to main content

Advertisement

Log in

Bounds on the Energy of a Soft Cubic Ferromagnet with Large Magnetostriction

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We complete the analysis initiated in Dabade et al. (J Nonlinear Sci 21:415–460, 2018) on the micromagnetics of cubic ferromagnets in which the role of magnetostriction is significant. We prove ansatz-free lower bounds for the scaling of the total micromagnetic energy including magnetostriction contribution, for a two-dimensional sample. This corresponds to the micromagnetic energy per unit length of an infinitely thick sample. A consequence of our analysis is an explanation of the multi-scale zig-zag Landau state patterns recently reported in single crystal Galfenol disks from an energetic viewpoint. Our proofs use a number of well-developed techniques in energy-driven pattern formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Our choice of signs here is a bit different from convention: The materials that are of interest in this paper are “negative anisotropy materials,” with \(K_a < 0\), and correspondingly, \(\varphi \) is defined by the negative of Eq. (1.13), nevertheless rendering the product \(K_a \varphi \) nonnegative.

References

  • Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser Boston Inc, Boston (1994)

    MATH  Google Scholar 

  • Choksi, R., Kohn, R.V.: Bounds on the micromagnetic energy of a uniaxial ferromagnet. Commun. Pure Appl. Math. 51(3), 259–289 (1998)

    Article  MathSciNet  Google Scholar 

  • Choksi, R., Kohn, R.V., Otto, F.: Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Commun. Math. Phys. 201(1), 61–79 (1999)

    Article  MathSciNet  Google Scholar 

  • Chopra, H.D., Wuttig, M.: Non-joulian magnetostriction. Nature 521(7552), 340–343 (2015)

    Article  Google Scholar 

  • Dabade, V., Venkatraman, R., James, R.D.: Micromagnetics of galfenol. J. Nonlinear Sci. 21, 415–460 (2018)

    MathSciNet  MATH  Google Scholar 

  • DeSimone, A., James, R.D.: A constrained theory of magnetoelasticity. J. Mech. Phys. Solids 50(2), 283–320 (2002)

    Article  MathSciNet  Google Scholar 

  • DeSimone, A., Kohn, R.V., Müller, S., Otto, F., Schäfer, R.: Two-dimensional modelling of soft ferromagnetic films. Proc. R. Soc. Lond. A. Math. Phys. Eng. Sci. 457, 2983–2991 (2001a)

    Article  MathSciNet  Google Scholar 

  • DeSimone, A., Müller, S., Kohn, R.V., Otto, F.: A compactness result in the gradient theory of phase transitions. Proc. R. Soc. Edinb. Sect. A 131(4), 833–844 (2001b)

    Article  MathSciNet  Google Scholar 

  • DeSimone, A., Kohn, R.V., Müller, S., Otto, F., et al.: Recent analytical developments in micromagnetics. Sci. Hysteresis 2(4), 269–381 (2006)

    MATH  Google Scholar 

  • Ghiraldin, F., Lamy, X.: Optimal Besov differentiability for entropy solutions of the Eikonal equation. Commun. Pure Appl. Math. 73(2), 317–349 (2020)

    Article  MathSciNet  Google Scholar 

  • Hang, F.B., Lin, F.H.: Static theory for planar ferromagnets and antiferromagnets. Acta Math. Sin. (Engl. Ser.) 17(4), 541–580 (2001)

    Article  MathSciNet  Google Scholar 

  • Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin (2008)

    Google Scholar 

  • Jabin, P.-E., Otto, F., Perthame, B.: Line-energy Ginzburg–Landau models: zero-energy states. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 1(1), 187–202 (2002)

    MathSciNet  MATH  Google Scholar 

  • James, R.D., Wuttig, M.: Magnetostriction of martensite. Philos. Mag. A 77(5), 1273–1299 (1998)

    Article  Google Scholar 

  • Knüpfer, H., Kohn, R.V., Otto, F.: Nucleation barriers for the cubic-to-tetragonal phase transformation. Commun. Pure Appl. Math. 66(6), 867–904 (2013)

    Article  MathSciNet  Google Scholar 

  • Lifshitz, E.: On the magnetic structure of iron. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 15(3), 97–107 (1945)

    Google Scholar 

  • Nitsche, J.A.: On Korn’s second inequality. RAIRO. Analyse numérique 15(3), 237–248 (1981)

    Article  MathSciNet  Google Scholar 

  • Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester (1987)

    MATH  Google Scholar 

  • Sternberg, P.: The effect of a singular perturbation on nonconvex variational problems. Arch. Ration. Mech. Anal. 101(3), 209–260 (1988)

    Article  MathSciNet  Google Scholar 

  • Vasseur, A.: Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160(3), 181–193 (2001)

    Article  MathSciNet  Google Scholar 

  • Zhang, J.X., Chen, L.Q.: Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater. 53(9), 2845–2855 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Robert V. Kohn for several useful comments on an earlier draft of this paper and an anonymous referee for catching an error in an earlier version. RV thanks Dallas Albritton for helpful conversations on Besov spaces. We thank Felix Otto for pointing out a small error in Dabade et al. (Dabade et al. 2018, Figure 2 a) of our previous paper, where the middle zig-zag lines were inverted. The correct figure is Fig. 2, making magnetization divergence free. The research of R.V was partially supported by the Center for Nonlinear Analysis at Carnegie Mellon University, by an AMS-Simons travel award, and by the National Science Foundation Grant No. DMS-1411646. The work of RDJ was supported by NSF (DMREF-1629026), and it also benefitted from the support of ONR (N00014-18-1-2766), the MURI Program (FA9550-12-1-0458, FA9550-16-1-0566), the RDF Fund of IonE, the Norwegian Centennial Chair Program and the hospitality and support of the Isaac Newton Institute (EPSRC Grant EP/R014604/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Venkatraman.

Additional information

Communicated by Irene Fonseca.

Dedicated to Peter Sternberg on the occasion of his sixtieth birthday, with respect and admiration.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatraman, R., Dabade, V. & James, R.D. Bounds on the Energy of a Soft Cubic Ferromagnet with Large Magnetostriction. J Nonlinear Sci 30, 3367–3388 (2020). https://doi.org/10.1007/s00332-020-09653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-020-09653-6

Keywords

Mathematics Subject Classification

Navigation