Skip to main content

Advertisement

Log in

Impact of sea-level and climatic changes on the Amazon coastal wetlands during the late Holocene

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Wetland dynamics in northern Brazil during the Holocene were studied by pollen analysis and AMS radiocarbon dating of three cores. Near the Amazon mouth region, covered mainly by primary Amazon coastal forest and herbaceous vegetation, the pollen record indicates the dominance of mangroves between 4800 and 1100 cal yr b.p. A contraction of the mangrove area and an expansion of herbaceous and fern vegetation occurred between 1100 and 750 cal yr b.p. The period between 750 and 200 cal yr b.p. is characterized by an expansion of mangrove and a decrease in herbaceous and fern vegetation. This trend continued until the present. On Atalaia Island, the sediment core indicates a period with poor pollen preservation between 830 and 630 cal yr b.p. Between 630 and 330 cal yr b.p., mangroves expanded. Later, up to 45 cal yr b.p., the mangrove area decreased and the herbaceous vegetation expanded. During the last hundred years, the relative sea-level rise most probably favored the mangrove expansion as far as the topographically highest sector on this island, while the herbaceous vegetation decreased. The pollen data from Água Preta Lake indicate dry conditions, as reflected by the poor pollen preservation between 390 and 240 cal yr b.p. Between 240 and 60 cal yr b.p., restinga and Amazon coastal forest with palms dominated this region. For the last 120 years, the record indicates an expansion of the mangrove area. However, recent confinement of mangrove development to the topographically highest area, and the loss of mangrove areas on the lowest surfaces have led to a net loss of mangrove coverage during the last decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott MB, Binford MW, Brenner M, Kelts KR (1997) A 3500 14C yr high-resolution record of lake level changes in Lake Titicaca, Bolivia/Peru. Quatern Res 47:169–180

    Article  Google Scholar 

  • Absy ML, Cleef AL, Fournier M, Martin L, Servan M, Sifeddine A, Da Silva MF, Soubies F, Suguio K, Turcq B, van der Hammen T (1991) Mise en évidence de quatre phases d’ouverture de la forêt dense dans le sud-est de l’Amazonie au cours des 60000 dernières années Première comparaison avec d’autres régions tropicales. Comptes Rendus Academie des Sciences, Paris 312:673–678

    Google Scholar 

  • Alongi DM, Sasakumar A, Tirendi F, Dixon P (1998) The influence of stand age on benthic decomposition and recycling of organic matter in managed mangrove forests of Malaysia. J Exp Mar Biol Ecol 225:197–218

    Article  Google Scholar 

  • Alongi DM, Tirendi F, Trott LA, Brunskill GJ (1999) Mineralisation of organic matter in intertidal sediments of a tropical semi-enclosed delta. Estuar Coast Shelf Sci 48:451–467

    Article  Google Scholar 

  • Alongi DM, Tirendi F, Clough BF (2000) Below-ground decomposition of organic matter in forests of the mangrove Rhizophora stylosa and Avicennia marina along the arid coast of Western Australia. Aquat Bot 68:97–122

    Article  Google Scholar 

  • Angulo RJ, Lessa G (1997) The Brazilian sea level curves: a critical review with emphasis on the curves from Paranaguá and Cananéia regions. Mar Geol 140:141–166

    Article  Google Scholar 

  • Angulo RJ, Giannini PCF, Suguio K, Pessenda LCR (1999) Relative sea-level changes in the last 5500 years in southern Brazil Laguna-Imbituba region, Santa Catarina State based on vermetid 14C ages. Mar Geol 159:323–339

    Article  Google Scholar 

  • Angulo RJ, de Souza MC, Assine ML, Pessenda LCR, Disaró ST (2008) Chronostratigraphy and radiocarbon age inversion in the Holocene regressive barrier of Paraná, southern Brazil. Mar Geol 252:111–119

    Article  Google Scholar 

  • Baltzer F (1970) Etude sédimentologique du marais de Mara (Côte ouest de la Nouvelle Calédonie) et de formations quaternaires voisines Mémoires expédition française sur les récifs coralliens de la Nouvelle Calédonie. Foundation Singer-Polignac 4:146–169

    Google Scholar 

  • Baltzer F (1975) Solution of silica and formation of quartz and smectite in mangrove swamps and adjacent hypersaline marsh environments. In: Proceedings of the international symposium on biology and management of Mangroves, Univ, Florida, pp 482–498

  • Behling H (1993) Untersuchungen zur spätpleistozänen und holozänen Vegetations- und Klimageschichte der tropischen Küstenwälder und der Araukarienwälder in Santa Catarina (Südbrasilien). Diss Bot 206. Cramer, Berlin

  • Behling H (2001) Late quaternary environmental changes in the Lagoa da Curuça region (eastern Amazonia, Brazil) and evidence of Podocarpus in the Amazon lowland. Veget Hist Archaeobot 10:175–183

    Article  Google Scholar 

  • Behling H, Costa ML (1997) Studies on Holocene tropical vegetation, mangrove and coast environments in the State of Maranhão, NE Brazil. Quat South Am Antarct Penins 10:93–118

    Google Scholar 

  • Behling H, Costa ML (2000) Holocene environmental changes from the Rio Curua record in the Caxiuana region, Eastern Amazon Basin. Quat Res 53:369–377

    Article  Google Scholar 

  • Behling H, Cohen MCL, Lara RJ (2001) Studies on Holocene mangrove ecosystem dynamics of the Bragança Peninsula in north-eastern Pará, Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 167:225–242

    Article  Google Scholar 

  • Behling H, Cohen MCL, Lara RJ (2004) Late Holocene mangrove dynamics of the Marajó Island in northern Brazil. Veget Hist Archaeobot 13:73–80

    Article  Google Scholar 

  • Bird ECF (1980) Mangroves and coastal morphology. The Victorian Nauralist 97:48–58

    Google Scholar 

  • Cahoon DR, Lynch JC (1997) Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida USA. Mangroves Salt Marshes 3:173–186

    Article  Google Scholar 

  • Chappell J, Polach H (1991) Post-glacial sea-level rise from a coral record at Huon Peninsular, Papua New Guinea. Nature 349:147–149

    Article  Google Scholar 

  • Cioccale MA (1999) Climatic fluctuations in the Central Region of Argentina in the last 1000 years. Quat Int 62:35–47

    Article  Google Scholar 

  • Clark MW, McConchie DM, Lewis DW, Saenger P (1998) Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chem Geol 149:147–171

    Article  Google Scholar 

  • Cohen MCL, Lara RJ (2003) Temporal changes of mangrove vegetation boundaries in Amazônia: application of GIS and remote sensing techniques. Wetl Ecol Manag 11:223–231

    Article  Google Scholar 

  • Cohen MCL, Lara RJ, Ramos JFF, Dittmar T (1999) Factors influencing the variability of magnesium, calcium and potassium in waters of a mangrove creek in Bragança, North Brazil. Mangroves Salt Marshes 3:9–15

    Article  Google Scholar 

  • Cohen MCL, Behling H, Lara RJ (2005a) Amazonian mangrove dynamics during the last millennium: the relative sea-level and the little ice age. Rev Palaeobot Palynol 136:93–108

    Article  Google Scholar 

  • Cohen MCL, Souza Filho PW, Lara RL, Behling H, Angulo R (2005b) A model of Holocene mangrove development and relative sea-level changes on the Bragança Peninsula (northern Brazil). Wetl Ecol Manag 13:433–443

    Article  Google Scholar 

  • Cohen MCL, Lara RJ, Smith CB, Angelica RS, Dias BS, Pequeno T (2008) Wetland dynamics of Marajó Island, northern Brazil during the last 1000 years. Catena 76:70–77

    Article  Google Scholar 

  • Eisma D, Augustinus PGEF, Alexander CR (1991) Recent and subrecent changes in the dispersal of Amazon mud. J Sea Res 28:181–192

    Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis IV. Wiley, Chichester

    Google Scholar 

  • Fairbridge RW (1961) Eustatic changes in sea level. Phys chem earth 4:99–185

    Article  Google Scholar 

  • Gleason H, Cook M (1926) Plant ecology of Puerto Rico. Scientific Surveys of Puerto Rico and the Virgin Islands 7(1). New York

  • Gornitz V (1991) Global coastal hazards from future sea level Rise. Palaeogeogr Palaeoclimatol Palaeoecol 89:379–398

    Article  Google Scholar 

  • Grimm EC (1992) Tilia and Tilia-graph: Pollen spreadsheet and graphics programs. Programs and Abstracts, 8th international palynological congress, Aix-en-Provence, September 6–12, 1992, p 56

  • Herrera LF, Urrego LE (1996) Atlas de polen de plantas útiles y cultivadas de la Amazonia colombiana (Pollen atlas of useful and cultivated plants in the Colombian Amazon region). Estudios en la Amazonia Colombiana XI, Tropenbos-Colombia, Bogotá

  • Hesp PA, Dillenburg SR, Barboza EG, Clerot LCP, Tomazelli LJ, Zouain RNA (2007) Morphology of the Itapeva to Tramandai transgressive dunefield barrier system and mid- to late Holocene sea level change. Earth Surf Process Landf 32:407–414

    Article  Google Scholar 

  • Hesse PR (1961) Some differences between the soils of Rhizophora and Avicennia mangrove swamp in Sierra Leone. Plant Soil 14:335–346

    Article  Google Scholar 

  • Iriondo M, Kröhling D (1995) El Sistema Eólico Pampeano Com. Museo Prov. Ciências Naturales 5:1–80

    Google Scholar 

  • Jomelli V, Grancher D, Brunstein D, Solomina O (2008) Recalibration of the yellow Rhizocarpon growth curve in the Cordillera Blanca (Peru) and implications for LIA chronology. Geomorphology 93:201–212

    Article  Google Scholar 

  • Junk WJ, Piedade MTF (2004) Status of Knowledge, ongoing research, and research needs in Amazonia wetlands. Wetl Ecol Managt 12:597–609

    Article  Google Scholar 

  • Kjerfve B, Lacerda LD (1993) Mangroves of Brazil. In: Lacerda LD (ed) Conservation and sustainable utilization of mangrove forests in Latin America and Africa Regions. Part I - Latin America. ITTO/International Society for Mangrove Ecosystems, Okinawa, Japan, pp 245–272

    Google Scholar 

  • Kjerfve B, Perillo GME, Gardner LR, Rine JM, Dias GTM, Mochel FR (2002) Morphodynamics of muddy environments along the Atlantic coasts of North and South America. In: Healy T, Wang Y, Healy JA (eds) Muddy coasts of the world: processes deposits and functions. Elsevier, Amsterdam, pp 479–532

    Chapter  Google Scholar 

  • Krauss KW, Lovelock CE, McKee KL, López-Hoffman L, Ewe SML, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89:105–127

    Article  Google Scholar 

  • Lacerda LD, Ittekkot V, Patchineelam SR (1995) Biogeochemistry of mangrove soil organic matter: a comparison between Rhizophora, Avicennia soils in south-eastern Brazil. Estuar Coast Shelf Sci 40:713–720

    Article  Google Scholar 

  • Lamberti A (1969) Contribuição ao conhecimento da ecologia das plantas do manguezal de Itanhaém, Boletim da Fac. Fil. Ciên. 23. Letras da Universidade de São Paulo, pp 7–217

  • Lara RJ, Cohen MCL (2006) Sediment porewater salinity and mangrove vegetation height in Bragança, North Brazil: an ecohydrology-based empirical model. Wetl Ecol Manag 14:349–358

    Article  Google Scholar 

  • Lara RJ, Cohen MCL (2008) Palaeolimnological studies and ancient maps confirm secular climate fluctuations in Amazônia. Climatic Change. doi:10.1007/s10584-008-9507-9 (in press)

  • Malagnino ED, Strelin J (1996) Oscilaciones del enplazamiento en el brazo Norte del Lago Argentino y península Herminita desde el Holoceno Tardío hasta la actualidad. XIII Congr. Geol. Arg., Actas IV. pp 290–308

  • Maslin AM, Bruns SJ (2001) Reconstruction of the Amazon Basin effective moisture availability over the past 14, 000 years. Science 290:2285–2291

    Google Scholar 

  • Matthijs S, Tack J, Speybroeck D van, Koedam N (1999) Mangrove species zonation and soil redox state, sulphide concentration and salinity in Gazi Bay (Kenya), a preliminary study. Mangroves Salt Marshes 3:243–249

    Article  Google Scholar 

  • McGinley M (2007) Marajó varzea. In: Cleveland CJ (ed) Encyclopedia of Earth. Environmental information coalition, National Council for Science and the Environment Washington. http://www.eoearth.org/article/Marajó_varzea. Retrieved August 8, 2008)

  • Medina E, Cuevas E, Popp Lugo AE (1990) Soil salinity, sun exposure, and growth of Acrostichum aureum. The Mangrove Fern. Bot Gaz 151:41–49

    Article  Google Scholar 

  • Molodkov AN, Bolikhovskaya NS (2002) Eustatic sea-level and climate changes over the last 600 ka as derived from mollusk-based ERS-chronostratigraphy and pollen evidence in Northern Eurasia. Sediment Geol 150:185–201

    Article  Google Scholar 

  • Mörner N-A (1996) Global change and interaction of earth rotation, ocean circulation and paleoclimate. Anais da Academia Brasileira de Ciências 68:77–94

    Google Scholar 

  • Mörner N-A (1999) Sea level and climate: rapid regressions at local warm phases. Quat Int 60:75–82

    Article  Google Scholar 

  • Oerlemans J (2001) Glaciers and climate change. Library of Congress Cataloging-in-Publication Data, p 123

  • Pujos M, Latouche C, Maillet N (1996) Late quaternary paleoceanography of the French Guiana continental shelf: clay-mineral evidence. Oceanol Acta 19:477–487

    Google Scholar 

  • Rabatel A, Jomelli V, Naveau P, Francou B, Grancher D (2005) Dating of Little Ice Age glacier fluctuations in the tropical Andes: Charquini glaciers, Bolivia, 16oS. C R Geosci 337:1311–1322

    Article  Google Scholar 

  • Rossetti DF, Valeriano MM, Góes AM, Thales M (2008) Palaeodrainage on Marajó Island, northern Brazil, in relation to Holocene relative sea-level dynamics. Holocene 18:1–12

    Article  Google Scholar 

  • Rossetti DF, Góes AM, Truckenbrodt W, Anaisse J (2000) Tsunami-induced large-scale scour-and-fill structures in Late Albian to Cenomanian deposits of the Grajau Basin, northern Brazil. Sedimentology 47:309–323

    Article  Google Scholar 

  • Roubik DW, Moreno JE (1991) Pollen and spores of Barro Colorado Island. Missouri Botanical Garden, St. Louis 36

  • Rull V, Vegas-Vilarrubia T, Espinoza NP (1999) Palynological record of an early-mid Holocene mangrove in eastern Venezuela: implications for sea-level rise and disturbance history. J Coast Res 15:496–504

    Google Scholar 

  • Scholl DW (1964) Recent sedimentary record in Mangrove Swamps and Rise in Sea Level over the Southwestern Coast of Florida: Part 1. Mar Geol 1:344–366

    Article  Google Scholar 

  • Snedaker SC (1982) Mangrove species zonation: why? In: Sen DN, Rajpurohit KS (eds) Contributions to the ecology of halophytes, tasks for vegetation science, vol 2. Junk, The Hague, pp 111–125

    Google Scholar 

  • Solomina O, Jomelli V, Kaser G, Ames A, Berger B, Pouyaud B (2007) Lichenometry in the Cordillera Blanca, Peru. “Little Ice Age” moraine chronology. Global Planet Change 59:225–235

    Article  Google Scholar 

  • Souza Filho PWM, Cohen MCL, Lara RJ, Lessa GC, Koch B, Behling H (2006) Holocene coastal evolution and facies model of the Bragança Macrotidal flat on the Amazon Mangrove Coast, Northern Brazil. J Coastal Res 39:306–310

    Google Scholar 

  • Spenceley AP (1982) Sedimentation patterns in a mangal on magnetic Island near Townsville, North Queensland, Australia. Singap J Trop Geogr 3:100–107

    Article  Google Scholar 

  • Strelin J, Iturraspe R (2007) Recent evolution and mass balance of Cordón Martial glaciers, Cordillera Fueguina Oriental. Glob Planet Change 59:17–26

    Article  Google Scholar 

  • Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, Plicht van der J, Spurk M (1988) INTCAL98 radiocarbon age calibration, 24000–0 cal b.p. Radiocarbon 40:1041–1083

    Google Scholar 

  • Suguio K, Martin L, Bittencourt ACSP, Dominguez JML, Flexor JM, Azevedo AEG (1985) Flutuações do nível relativo do mar durante o Quaternário superior ao longo do litoral brasileiro e suas implicações na sedimentação costeira. Rev Bras Geoc 15:273–286

    Google Scholar 

  • Thompson LG, Mosley-Thompson E, Bolzan JF, Koci BR (1985) A 1500-year record of tropical precipitation in ice cores from the Quelccaya ice cap, Peru. Science 229:971–973

    Article  Google Scholar 

  • Tomazelli LJ (1990) Contribuição ao Estudo dos Sistemas Deposicionais Holocênicos do Nordeste da Província Costeira do Rio Grande do Sul, com Ênfase no Sistema Eölico, Ph.D. Thesis. Universidade Federal do Rio Grande do Sul, Porto Alegre

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Van de Plassche O (ed) (1986) Sea level research: a manual for the collection and evaluation of data. Geobooks, Norwich

  • Van der Hammen T (1986) Fluctuaciones holocenicas del nivel de inundaciones en la cuenca del Bajo Magdalena Cauca-San Jorge (Colombia). Geología Norandina 10:11–18

    Google Scholar 

  • Vedel V, Behling H, Cohen MCL, Lara RJ (2006) Holocene mangrove dynamics and sea-level changes in northern Brazil, inferences from the Taperebal core in northeastern Pará State. Veget Hist Archaeobot 15:115–123

    Article  Google Scholar 

  • Walter H (1973) Die Vegetation der Erde in ökophysiologischer Betrachtung 1: Die tropischen und subtropischen Zonen. Fischer, Jena

    Google Scholar 

  • Walsh GE (1974) Mangroves, a review. In: Reimold RJ, Queens WH (eds) Ecology of halophytes. Academic Press, Dublin, pp 51–174

  • Woodroffe CD (1981) Mangrove swamp Stratigraphy and holocene transgression, grand Cayman Island, West Indies. Mar Geol 41:271–294

    Article  Google Scholar 

  • Woodroffe CD (1982) Geomorphology and development of Mangrove Swamps, Grand Cayman Island. West Indies Bull Mar Sci 32:381–398

    Google Scholar 

  • Woodroffe CD, Thom BG, Chappell J, Wallensky E, Grindrod J, Head J (1987) Relative sea-level in South Alligator River Region, North Australia, during the Holocene. Search 18:198–200

    Google Scholar 

  • Woodroffe CD, Chappell J, Thom BG, Wallensky E (1989) Depositional model of a macrotidal estuary and floodplains, South Alligator River, Northern Australia. Sedimentology 36:737–756

    Article  Google Scholar 

  • Zarin DJ, Pereira VFG, Raffles H, Rabelo FG, Pinedo-Vasquez M, Congalton RG (2001) Landscape changes in tidal floodplains near the mouth of the Amazon River. For Ecol Manage 154:383–393

    Article  Google Scholar 

Download references

Acknowledgments

We thank the members of the Center for Tropical Marine Ecology-Germany in particular Ulf Mehlig and the oceanography students from Laboratory of Coastal Dynamics-UFPa in Brazil. A special thanks to the friend Alexey Nicolau da Costa. This study was financed by the Brazilian National Research Council (CNPq, Process: 470604/2006-9) and the German Ministry for Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Cancela Lisboa Cohen.

Additional information

Communicated by E. Grimm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, M.C.L., Behling, H., Lara, R.J. et al. Impact of sea-level and climatic changes on the Amazon coastal wetlands during the late Holocene. Veget Hist Archaeobot 18, 425–439 (2009). https://doi.org/10.1007/s00334-008-0208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-008-0208-0

Keywords

Navigation