Skip to main content
Log in

Mechanically activated synthesis of PZT and its electromechanical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr0.7Ti0.3)O3 (PZT) powders. Lead–zirconium–titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of ∼110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 °C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Newnham, G.R. Ruschau: Am. Ceram. Soc. Bull. 75, 51 (1996)

    Google Scholar 

  2. S.H. Cho, J.V. Biggers: J. Am. Ceram. Soc. 66, 743 (1983)

    Article  Google Scholar 

  3. T. Yamamoto: Am. Ceram. Soc. Bull. 71, 978 (1992)

    Google Scholar 

  4. C. Cherring: J. Appl. Phys. 21, 31 (1950)

    Google Scholar 

  5. D.A. Barrow, T.E. Petroff, M. Sayer: Surf. Coat. Technol. 7677, 113 (1995)

    Google Scholar 

  6. W.S. Beh, Y. Xia: J. Mater. Res. 14, 3995 (1999)

    Article  ADS  Google Scholar 

  7. T. Yamamoto, T. Sakuma: J. Am. Ceram. Soc. 77, 1107 (1994)

    Article  Google Scholar 

  8. R.E. Riman, L.E. McCandlish, X. Liu: Single-Crystal-Like Materials, US Patent pending, P24283

  9. H. Hirashima, J. Boy: J. Non-Cryst. Solids 121, 404 (1990)

    Article  ADS  Google Scholar 

  10. L.S. Ee, J. Wang, S.C. Ng, L.M. Gan: Mater. Res. Bull. 33, 1045 (1998)

    Article  Google Scholar 

  11. J.H. Choy, Y.S. Han, J.T. Kim: J. Mater. Chem. 5, 65 (1995)

    Article  Google Scholar 

  12. R.C. Buchanan, J. Bey: J. Electrochem. Soc.: Solid State Sci. Technol. 132, 1671 (1985)

    Article  Google Scholar 

  13. C.C. Koch: Annu. Rev. Mater. Sci. 19, 121 (1989)

    Article  ADS  Google Scholar 

  14. C.C. Koch, O.B. Cavin, C.G. Mckamey, J.O. Scarbrough: Appl. Phys. Lett. 43, 1017 (1983)

    Article  ADS  Google Scholar 

  15. C.C. Koch: Mater. Trans. JIM 36, 85 (1995)

    Article  Google Scholar 

  16. T.P. Shen, C.C. Koch, T.L. McCormick, R.J. Nemanich, J.Y. Huang, J.G. Huang: J. Mater. Res. 10, 139 (1995)

    Article  ADS  Google Scholar 

  17. M.L. Trudeau, R. Schulz, D. Dussault, A. Van Neste: Phys. Rev. Lett. 64, 99 (1990)

    Article  ADS  Google Scholar 

  18. M.L. Trudeau, J.Y. Huot, R. Schulz, D. Dussault, A. Van Neste, G.L. Esperance: Phys. Rev. B 45, 4626 (1992)

    Article  ADS  Google Scholar 

  19. M.L. Trudeau: in Proc. NATO Advanced Study Institute Nanophase Materials, Synthesis, Properties, Applications, ed. by G.C. Hadjipanayis, R.W. Siegel (Kluwer Academic, The Netherlands 1994) p. 153

  20. M.L. Trudeau: Appl. Phys. Lett. 64, 3661 (1994)

    Article  ADS  Google Scholar 

  21. A.K. Giri: Adv. Mater. 9, 163 (1997)

    Article  Google Scholar 

  22. G.J. Fan, M.X. Quan, Z.Q. Hu, W. Loser, J. Eckert: J. Mater. Res. 14, 3765 (1999)

    Article  ADS  Google Scholar 

  23. A.K. Giri, J. Gonzalez, J.M. Gonzalez: IEEE Trans. Magn. 31, 3904 (1995)

    Article  ADS  Google Scholar 

  24. A.K. Giri, P. Garcia Tello, J. Gonzalez, J.M. Gonzalez: J. Appl. Phys. 79, 5479 (1996)

    Article  ADS  Google Scholar 

  25. C. Jovalekic, M. Zdujic, A. Radakovic, M. Mitric: Mater. Lett. 24, 365 (1995)

    Article  Google Scholar 

  26. X. Liu, J. Wang, J. Ding, M.S. Chen, Z.X. Shen: J. Mater. Chem. 10, 1745 (2000)

    Article  Google Scholar 

  27. J. Xue, D. Wan, S.-E. Lee, J. Wang: J. Am. Ceram. Soc. 82, 1687 (1999)

    Article  Google Scholar 

  28. J. Xue, J. Wang, T.M. Rao: J. Am. Ceram. Soc. 84, 660 (2001)

    Article  Google Scholar 

  29. J. Wang, J. Xue, D. Wan: Solid State Ionics 127, 169 (2000)

    Article  Google Scholar 

  30. IEEE Standard on Piezoelectricity No. 176-1987, Institute of Electrical and Electronics Engineers (1987) [ISBN 0-7381-2411-7]

  31. B. Guiffard, M. Troccaz: Mater. Res. Bull. 33, 1759 (1998)

    Article  Google Scholar 

  32. B. Balachandran, T.R.N. Kutty: Mater. Chem. Phys. 10, 287 (1984)

    Article  Google Scholar 

  33. M. Traianidis, C. Courtois, A. Leriche: J. Eur. Ceram. Soc. 20, 2713 (2000)

    Article  Google Scholar 

  34. R.N. Das, A. Pathak, P. Pramanik: J. Am. Ceram. Soc. 81, 3357 (1998)

    Article  Google Scholar 

  35. B. Jaffe, W.R. Cook, H. Jaffe: Piezoelectric Ceramics (Academic, London, New York 1971) pp. 142–149

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.E. Riman.

Additional information

PACS

81.07.Wx; 77.84.Dy; 81.20.Ev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Akdogan, E., Safari, A. et al. Mechanically activated synthesis of PZT and its electromechanical properties. Appl. Phys. A 81, 531–537 (2005). https://doi.org/10.1007/s00339-004-2903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-2903-8

Keywords

Navigation