Skip to main content
Log in

Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Chemically synthesized brookite titanium dioxide (TiO2) nanorods with average diameter and length dimensions of 3–4 nm and 35–50 nm, respectively, were deposited by the matrix-assisted pulsed laser evaporation technique. A toluene nanorod solution was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser (λ=248 nm, τ=20 ns) at the repetition rate of 10 Hz, at different fluences (25 to 350 mJ/cm2). The deposited films were structurally characterized by high-resolution scanning and transmission electron microscopy. 〈100〉 single-crystal Si wafers and carbon-coated Cu grids were used as substrates. Structural analyses evidenced the occurrence of brookite-phase crystalline nanospheres coexisting with individually distinguishable TiO2 nanorods in the films deposited at fluences varying from 50 to 350 mJ/cm2. Nanostructured TiO2 films comprising only nanorods were deposited by lowering the laser fluence to 25 mJ/cm2. The observed shape and phase transitions of the nanorods are discussed taking into account the laser-induced heating effects, reduced melting temperature and size-dependent thermodynamic stability of nanoscale TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ovenstone, K. Yanagisawa, Chem. Mater. 11, 2770 (1999)

    Article  Google Scholar 

  2. H.Z. Zhang, J.F. Banfield, J. Mater. Chem. 8, 2073 (1998)

    Article  Google Scholar 

  3. S. Bakardjieva, J. Subrt, V. Stengl, E. Vecernikova, P. Bezdicka, Diffus. Defect Data, Pt. B 90–91 (2003)

  4. Y. Hu, H.L. Tsai, C.L. Juany, Mater. Sci. Eng. A 344, 209 (2003)

    Article  Google Scholar 

  5. Y. Hu, H.L. Tsai, C.L. Juany, J. Eur. Ceram. Soc. 23, 691 (2003)

    Article  Google Scholar 

  6. J.G. Li, T. Ishigaki, Acta Mater. 52, 5143 (2004)

    Article  Google Scholar 

  7. S.L. Isley, R.L. Penn, J. Phys. Chem. B 110, 15134 (2006)

    Article  Google Scholar 

  8. X.Q. Gong, A. Selloni, Phys. Rev. B 76, 235307 (2007)

    Article  ADS  Google Scholar 

  9. J. Huberty, H. Xu, J. Solid State Chem. 181, 508 (2008)

    Article  ADS  Google Scholar 

  10. A.S. Bernard, L.A. Curtiss, Nano Lett. 5, 1261 (2005)

    Article  ADS  Google Scholar 

  11. A.S. Bernard, P. Zapol, J. Phys. Chem. B 108, 18435 (2004)

    Article  Google Scholar 

  12. M.P. Finnegan, H. Zhang, J.F. Banfield, J. Chem. Phys. C 111, 1962 (2007)

    Article  Google Scholar 

  13. M.P. Finnegan, H. Zhang, J.F. Banfield, Chem. Mater. 20, 3443 (2008)

    Article  Google Scholar 

  14. C.B. Mendive, T. Bredow, A. Feldhoff, M.A. Blesa, D. Bahnemann, Phys. Chem. Chem. Phys. 11, 1794 (2009)

    Article  Google Scholar 

  15. U. Bach, D. Lupo, P. Compte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Nature 395, 583 (1998)

    Article  ADS  Google Scholar 

  16. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453, 638 (2008)

    Article  ADS  Google Scholar 

  17. J. Jiu, S. Isoda, F.M. Wang, M. Adachi, J. Phys. Chem. B 110, 2087 (2006)

    Article  Google Scholar 

  18. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  Google Scholar 

  19. P.G. Su, C.-T. Lee, C.Y. Chou, K.-H. Cheng, Y.S. Chung, Sens. Actuators B, Chem. 139, 488 (2009)

    Article  Google Scholar 

  20. H.Y. Jeong, D.-S. Lee, H.K. Choi, D.H. Lee, J.-E. Kim, J.Y. Lee, W.J. Lee, S.O. Kim, S.-Y. Choi, Appl. Phys. Lett. 96, 213105 (2010)

    Article  ADS  Google Scholar 

  21. P. Singh, D. Kaur, Physica B 405, 1258 (2010)

    Article  ADS  Google Scholar 

  22. P. Lobi, M. Huppertz, D. Mergel, Thin Solid Films 251, 72 (1994)

    Article  ADS  Google Scholar 

  23. H.K. Ha, M. Hosimoto, H. Koinuma, B. Moon, H. Ishiwara, Appl. Phys. Lett. 68, 2965 (1996)

    Article  ADS  Google Scholar 

  24. M. Pal, J. Garcia Serrano, P. Santiago, U. Pai, J. Phys. Chem. C 111, 96 (2007)

    Article  Google Scholar 

  25. T. Ozawa, M. Iwasaki, H. Tada, T. Akita, K. Tanaka, S. Ito, J. Colloid Interface Sci. 281, 510 (2005)

    Article  Google Scholar 

  26. I.N. Kuznetsova, V. Blaskov, I. Stambolova, L. Znaidi, A. Kanaev, Mater. Lett. 59, 3820 (2005)

    Article  Google Scholar 

  27. M.P. Moret, R. Zallen, D.P. Vijay, S.B. Desu, Thin Solid Films 366, 8 (2000)

    Article  ADS  Google Scholar 

  28. J.H. Lee, Y.S. Yang, J. Mater. Sci. 41, 557 (2006)

    Article  ADS  Google Scholar 

  29. Y. Djaoued, R. Bruning, D. Bersani, P.P. Lottici, S. Badilescu, Mater. Lett. 58, 2618 (2004)

    Article  Google Scholar 

  30. Z. Yanqing, Sh. Erwe, C. Suxian, L. Wenjun, H. Xingfang, J. Mater. Sci. Lett. 19, 1445 (2000)

    Article  Google Scholar 

  31. B.I. Lee, X. Wang, R. Bhave, M. Hu, Mater. Lett. 60, 1179 (2006)

    Article  Google Scholar 

  32. T. Leistner, K. Lehmbacher, P. Harter, C. Schmidt, A.J. Bauer, L. Frey, H. Ryssel, J. Non-Cryst. Solids 303, 64 (2002)

    Article  ADS  Google Scholar 

  33. K.M.K. Srivatsa, M. Bera, A. Basu, Thin Solid Films 516, 7443 (2008)

    Article  ADS  Google Scholar 

  34. A.P. Caricato, R. Buonsanti, M. Catalano, P.D. Cozzoli, A. Luches, M.G. Manera, M. Martino, R. Rella, A. Taurino, Appl. Phys. A 104, 963 (2011)

    Article  ADS  Google Scholar 

  35. D.B. Chrisey, A. Piqué, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, D.M. Bubb, P.K. Wu, Chem. Rev. 103, 553 (2003)

    Article  Google Scholar 

  36. R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, T. Kipp, R. Cingolani, P.D. Cozzoli, J. Am. Chem. Soc. 130, 11223 (2008)

    Article  Google Scholar 

  37. S. S Mao, X. Chen, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  38. H.Z. Zhang, J.F. Banfield, J. Mater. Res. 15, 437 (2000)

    Article  ADS  Google Scholar 

  39. H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000)

    Article  Google Scholar 

  40. P.K. Naicker, P.T. Cummings, H.Z. Zhang, J.F. Banfield, J. Phys. Chem. B 109, 15243 (2005)

    Article  Google Scholar 

  41. J.-G. Li, T. Ishigaki, Acta Mater. 52, 5143 (2008)

    Article  Google Scholar 

  42. M.W. Cross, W.J. Varhue, Nanotechnology 19, 435705 (2008)

    Article  ADS  Google Scholar 

  43. X. Su, Z. Zhang, M. Zhu, Appl. Phys. Lett. 88, 061913 (2006)

    Article  ADS  Google Scholar 

  44. T. Karabacak, J.S. DeLuca, P.-I. Wang, J. Appl. Phys. 99, 064304 (2006)

    Article  ADS  Google Scholar 

  45. Y. Wang, C. Dellago, J. Phys. Chem. B 107, 9214 (2003)

    Article  Google Scholar 

  46. S. Link, C. Burda, B. Nikoobakht, M.A. El-Sayed, J. Phys. Chem. B 104, 6152 (2004)

    Article  Google Scholar 

  47. T. Mitsuhashi, O.J. Kleppa, J. Am. Ceram. Soc. 62, 356 (1979)

    Article  Google Scholar 

  48. M. Rezaee, S.M. Mousavi Khoie, J. Alloys Compd. 507, 484 (2010)

    Article  Google Scholar 

  49. E. Leveugle, L.V. Zhigilei, J. Appl. Phys. 102, 074914 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Caricato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caricato, A.P., Belviso, M.R., Catalano, M. et al. Study of titania nanorod films deposited by matrix-assisted pulsed laser evaporation as a function of laser fluence. Appl. Phys. A 105, 605–610 (2011). https://doi.org/10.1007/s00339-011-6597-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6597-4

Keywords

Navigation